Plasmonic nanoantennas with suitable far-field characteristics are of huge interest for utilization in optical wireless links, inter-/intrachip communications, LiDARs, and photonic integrated circuits due to their exceptional modal confinement. Despite its success in shaping robust antenna design theories in radio frequency and millimeter-wave regimes, conventional transmission line theory finds its validity diminished in the optical frequencies, leading to a noticeable void in a generalized theory for antenna design in the optical domain. By utilizing neural networks, and through a one-time training of the network, one can transform the plasmonic nanoantennas design into an automated, data-driven task.
View Article and Find Full Text PDFWe present a low-resource and robust optical implementation of the four-dimensional Grover coin, a four-port linear-optical scatterer that augments the low dimensionality of a regular beam-splitter. While prior realizations of the Grover coin required a potentially unstable ring cavity to be formed, this version of the scatterer does not exhibit any internal interference. When this Grover coin is placed in another system, it can be used for interferometry with a higher-dimensional set of optical field modes.
View Article and Find Full Text PDFThe composition, structure, and protective and hydrophobic properties of nanoscale films formed layer-by-layer in solutions of sodium dodecylphosphonate (SDDP) and vinyltrimethoxysilane or -octyltriethoxysilane (OTES) on the zinc surface with different morphologies were studied by SEM, XPS, water contact angle measurements, and electrochemical and corrosion tests. The protective, hydrophobic properties of phosphonate-siloxane films on zinc and their stability in a corrosive media are determined both by the initial surface morphology and composition of the surface oxide layer, and by the nature of inhibitors. It was shown that preliminary laser texturing of the zinc surface is preferable than chemical etching to enhance the anticorrosive properties of the resulting thin films.
View Article and Find Full Text PDFThe intriguing analogy between quantum physics and optics has inspired the design of unconventional integrated photonics devices. In this paper, we numerically demonstrate a broadband integrated polarization beam splitter (PBS) by implementing the stimulated Raman adiabatic passage (STIRAP) technique in a three-waveguide plasmonic system. Our proposed PBS exhibits >250 nm transverse-magnetic (TM) bandwidth with <-40 dB extinction and >150 nm transverse-electric (TE) bandwidth with <-20 dB extinction, covering the entire S-, C-, and L-bands and part of the E-band.
View Article and Find Full Text PDFLithium niobate on insulator (LNOI) waveguides, as an emerging technology, have proven to offer a promising platform for integrated optics, due to their strong optical confinement comparable to silicon on insulator (SOI) waveguides, while possessing the versatile properties of lithium niobate, such as high electro-optic coefficients. In this paper, we show that mode hybridization, a phenomenon widely found in vertically asymmetric waveguides, can be efficiently modulated in an LNOI ridge waveguide by electro-optic effect, leading to a polarization mode converter with 97% efficiency. Moreover, the proposed device does not require tapering or periodic poling, thereby greatly simplifying the fabrication process.
View Article and Find Full Text PDFPurpose: To evaluate the effectiveness of complex treatment, including eyelid hygiene, on the condition of ocular surface in dry eye patients before cataract surgery.
Material And Methods: The study included 56 female age-related cataract patients (64±4.3 years old) with dry eye caused by Meibomian gland dysfunction (MGD).
Purpose: To analyze ophthalmic pathologies in HIV-infected patients of the ophthalmic hospitals of Perm city.
Material And Methods: Medical records of 75 HIV patients registered in Perm Regional Centre for Prevention and Control of AIDS and Infectious Diseases who had received treatment in ophthalmic in-patient clinics of Perm in 2005-2015 years were analyzed retrospectively. Patient examination included traditional ophthalmological methods, as well as immunological (determination of CD4 cells and viral load), serological (detection of antibodies to herpes simplex virus, cytomegalovirus, chlamydia, toxoplasma), general clinical methods, and consultations by allied specialists.
J Phys Condens Matter
January 2019
Working in the context of the Su-Schreiffer-Heeger model, the effect of topological boundaries on the structure and properties of bulk position-space wavefunctions is studied for a particle undergoing a quantum walk in a one-dimensional lattice. In particular, we consider what happens when the wavefunction reaches a boundary at which the Hamiltonian changes suddenly from one topological phase to another and construct an exact solution for the wavefunction on both sides of the boundary. The reflection and transmission coefficients at the boundary are calculated as a function of the system's hopping parameters, and it is shown that for some parameter ranges the transmission coefficient can be made very small.
View Article and Find Full Text PDFAll existing optical quantum walk approaches are based on the use of beamsplitters and multiple paths to explore the multitude of unitary transformations of quantum amplitudes in a Hilbert space. The beamsplitter is naturally a directionally biased device: the photon cannot travel in the reverse direction. This causes rapid increases in the optical hardware resources required for complex quantum walk applications, since the number of options for the walking particle grows with each step.
View Article and Find Full Text PDFA comparison of the cellular content of needle tip aspirates and entry sites after transconjunctival intravitreal injection (IVI) using different needle types was performed. White outbred rats and human cadaver eyes were used for IVI by hypodermic 27 gauge (G) and 30G needles, and spinal anesthesia Pencan 27G needles. Aspiration of vitreous for quantitative morphological and cell cultivation analysis, as well as cyto-histological analysis of aspirates and entry sites were carried out.
View Article and Find Full Text PDFWe present a new approach to engineering broadband sources of entangled photon pairs for quantum interferometry. The source is based on quasi-phase-matched spontaneous parametric down conversion in a titanium diffused periodically poled lithium niobate waveguide with a strongly-chirped poling period. The proposed non-standard asymmetric poling mitigates phase distortions associated with the process of chirping.
View Article and Find Full Text PDFPurpose. Choroidal neovascularization (CNV) is one of the most common complications of retinal diseases accompanied by elevated secretion of vascular endothelial growth factor (VEGF). Intravitreal anti-VEGFs (ranibizumab, bevacizumab, pegaptanib, and aflibercept) can suppress neovascularization, decrease vascular permeability and CNV size, and, thereby, improve visual function.
View Article and Find Full Text PDFEighty-one patients with diabetes mellitus type 2 (DM) and cardiovascular autonomic neuropathy were studied. The combined treatment with ω-3 PUFA, benfotiamine, and α-lipoic acid resulted in significant positive changes in total cholesterol, triacylglycerol, LDL and HDL cholesterol levels. The efficacy of this treatment was not associated with the improved compensation of DM but was a result of the direct influence of pharmacological agents on the metabolic rate studied.
View Article and Find Full Text PDFWe present an efficient method for optimizing the spatial profile of entangled-photon wave function produced in a spontaneous parametric down conversion process. A deformable mirror that modifies a wavefront of a 404 nm CW diode laser pump interacting with a nonlinear β-barium borate type-I crystal effectively controls the profile of the joint biphoton function. The use of a feedback signal extracted from the biphoton coincidence rate is used to achieve the optimal wavefront shape.
View Article and Find Full Text PDFUltrafast, high-efficiency single-photon detectors are among the most sought-after elements in modern quantum optics and quantum communication. However, imperfect modal matching and finite photon absorption rates have usually limited their maximum attainable detection efficiency. Here we demonstrate superconducting nanowire detectors atop nanophotonic waveguides, which enable a drastic increase of the absorption length for incoming photons.
View Article and Find Full Text PDFA broadband source of polarization entangled photons based on type-II spontaneous parametric down conversion from a chirped PPKTP crystal is presented. With numerical simulation and experimental evaluation, we report a source of broadband polarization entangled states with a bandwidth of approximately 125 nm for use in quantum interferometry. The technique has the potential to become a basis for the development of flexible broadband sources with designed spectral properties.
View Article and Find Full Text PDFA polarization mode dispersion (PMD) measurement of a commercial telecommunication wavelength selective switch (WSS) using a quantum interferometric technique with polarization-entangled states is presented. Polarization-entangled photons with a broad spectral width covering the telecom band are produced using a chirped periodically poled nonlinear crystal. The first demonstration of a quantum metrology application using an industrial commercial device shows a promising future for practical high-resolution quantum interference.
View Article and Find Full Text PDFThe use of quantum correlations between photons to separate measure even- and odd-order components of polarization mode dispersion (PMD) and chromatic dispersion in discrete optical elements is investigated. Two types of apparatus are discussed which use coincidence counting of entangled photon pairs to allow sub-femtosecond resolution for measurement of both PMD and chromatic dispersion. Group delays can be measured with a resolution of order 0.
View Article and Find Full Text PDFA recently introduced two-channel confocal microscope with correlated detection promises up to 50% improvement in transverse spatial resolution [Simon, Sergienko, Optics Express 18, 9765 (2010)] via the use of photon correlations. Here we achieve similar results in a different manner, introducing a triple-confocal correlated microscope which exploits the correlations present in optical parametric amplifiers. It is based on tight focusing of pump radiation onto a thin sample positioned in front of a nonlinear crystal, followed by coincidence detection of signal and idler photons, each focused onto a pinhole.
View Article and Find Full Text PDFA new type of confocal microscope is described which makes use of intensity correlations between spatially correlated beams of light. It is shown that this apparatus leads to significantly improved transverse resolution.
View Article and Find Full Text PDFCoherence-domain imaging systems can be operated in a single-photon-counting mode, offering low detector noise; this in turn leads to increased sensitivity for weak light sources and weakly reflecting samples. We have demonstrated that excellent axial resolution can be obtained in a photon-counting coherence-domain imaging (CDI) system that uses light generated via spontaneous parametric downconversion (SPDC) in a chirped periodically poled stoichiometric lithium tantalate (chirped-PPSLT) structure, in conjunction with a niobium nitride superconducting single-photon detector (SSPD). The bandwidth of the light generated via SPDC, as well as the bandwidth over which the SSPD is sensitive, can extend over a wavelength region that stretches from 700 to 1500 nm.
View Article and Find Full Text PDFWe describe a novel effect involving odd-order dispersion cancellation. We demonstrate that odd- and even-order dispersion cancellation may be obtained in different regions of a single quantum interferogram using frequency-anticorrelated entangled photons and a new type of quantum interferometer. This offers new opportunities for quantum communication and metrology in dispersive media.
View Article and Find Full Text PDFWe report the first experimental demonstration of even-order aberration cancellation in quantum interferometry. The effect is a spatial counterpart of the spectral group velocity dispersion cancellation, which is associated with spectral entanglement. It is manifested in temporal interferometry by virtue of the multiparameter spatial-spectral entanglement.
View Article and Find Full Text PDF