Publications by authors named "Sergi G Leyva"

We investigate the flow of an electrolyte through a rigid nanochannel decorated with a surface charge pattern. Employing lattice Boltzmann and dissipative particle dynamics methods, as well as analytical theory, we show that the electrohydrodynamic coupling leads to two distinct flow regimes. The accompanying discontinuous transition between slow, ionic, and fast, Poiseuille flows is observed at intermediate ion concentrations, channel widths, and electrostatic coupling strengths.

View Article and Find Full Text PDF

Active particles driven by chemical reactions are the subject of intense research to date due to their rich physics, being intrinsically far from equilibrium, and their multiple technological applications. Recent attention in this field is now shifting towards exploring the fascinating dynamics of active and passive mixtures. Here we realize active colloidal rafts, composed of a single catalytic particle encircled by several shells of passive microspheres, and assembled via light-activated chemophoresis.

View Article and Find Full Text PDF

We study computationally the dynamics of forced, Brownian particles through a disordered system. As the concentration of mobile particles and/or fixed obstacles increase, we characterize the different regimes of flow and address how clogging develops. We show that clogging is preceded by a wide region of anomalous transport, characterized by a power law decay of intermittent bursts.

View Article and Find Full Text PDF

In viscous fluids, motile microentities such as bacteria or artificial swimmers often display different transport modes than macroscopic ones. A current challenge in the field aims at using friction asymmetry to steer the motion of microscopic particles. Here we show that lithographically shaped magnetic microtriangles undergo a series of complex transport modes when driven by a precessing magnetic field, including a surfing-like drift close to the bottom plane.

View Article and Find Full Text PDF

Ratchet transport systems are widespread in physics and biology; however, the effect of the dispersing medium in the collective dynamics of these out-of-equilibrium systems has been often overlooked. We show that, in a traveling wave magnetic ratchet, long-range hydrodynamic interactions (HIs) produce a series of remarkable phenomena on the transport and assembly of interacting Brownian particles. We demonstrate that HIs induce the resynchronization with the traveling wave that emerges as a "speed-up" effect, characterized by a net raise of the translational speed, which doubles that of single particles.

View Article and Find Full Text PDF

We combine experiments and numerical simulations to investigate the emergence of clogging in a system of interacting paramagnetic colloidal particles driven against a disordered landscape of larger obstacles. We consider a single aperture in a landscape of immobile silica particles which are irreversibly attached to the substrate. We use an external rotating magnetic field to generate a traveling wave potential which drives the magnetic particles against these obstacles at a constant and frequency tunable speed.

View Article and Find Full Text PDF