Small aquatic organisms harbour deep phylogeographic patterns and highly structured populations even at local scales. These patterns indicate restricted gene flow, despite these organisms' high dispersal abilities, and have been explained by a combination of (1) strong founder effects due to rapidly growing populations and very large population sizes, and (2) the development of diapausing egg banks and local adaptation, resulting in low effective gene flow, what is known as the Monopolization hypothesis. In this study, we build up on our understanding of the mitochondrial phylogeography of the halophilic rotifer Brachionus plicatilis in the Iberian Peninsula by both increasing the number of sampled ponds in areas where secondary contact is likely and doubling sample sizes.
View Article and Find Full Text PDFRecent phylogeographical assessments have consistently shown that continental zooplankton display high levels of population subdivision, despite the high dispersal capacity of their diapausing propagules. As such, there is an apparent paradox between observed cosmopolitanism in the zooplankton that is associated with long-distance dispersal, and strong phylogeographical structures at a regional scale. Such population dynamics, far from migration-drift equilibrium, have been shown in the rotifer species complex Brachionus plicatilis, a group of over a dozen species inhabiting salt lakes and coastal lagoons worldwide.
View Article and Find Full Text PDF