Motivation: Single-cell RNA sequencing (scRNA-seq) data are widely used to study cancer cell states and their heterogeneity. However, the tumour microenvironment is usually a mixture of healthy and cancerous cells and it can be difficult to fully separate these two populations based on transcriptomics alone. If available, somatic single-nucleotide variants (SNVs) observed in the scRNA-seq data could be used to identify the cancer population and match that information with the single cells' expression profile.
View Article and Find Full Text PDFCurrent approaches to lineage tracing of stem cell clones require genetic engineering or rely on sparse somatic DNA variants, which are difficult to capture at single-cell resolution. Here, we show that targeted single-cell measurements of DNA methylation at single-CpG resolution deliver joint information about cellular differentiation state and clonal identities. We develop EPI-clone, a droplet-based method for transgene-free lineage tracing, and apply it to study hematopoiesis, capturing hundreds of clonal trajectories across almost 100,000 single-cells.
View Article and Find Full Text PDFHemasphere
February 2024
Relapse remains a major challenge in the clinical management of acute myeloid leukemia (AML) and is driven by rare therapy-resistant leukemia stem cells (LSCs) that reside in specific bone marrow niches. Hypoxia signaling maintains cells in a quiescent and metabolically relaxed state, desensitizing them to chemotherapy. This suggests the hypothesis that hypoxia contributes to the chemoresistance of AML-LSCs and may represent a therapeutic target to sensitize AML-LSCs to chemotherapy.
View Article and Find Full Text PDFCellular and organismal phenotypes are controlled by complex gene regulatory networks. However, reference maps of gene function are still scarce across different organisms. Here, we generated synthetic genetic interaction and cell morphology profiles of more than 6,800 genes in cultured Drosophila cells.
View Article and Find Full Text PDFInter-patient variability and the similarity of healthy and leukemic stem cells (LSCs) have impeded the characterization of LSCs in acute myeloid leukemia (AML) and their differentiation landscape. Here, we introduce CloneTracer, a novel method that adds clonal resolution to single-cell RNA-seq datasets. Applied to samples from 19 AML patients, CloneTracer revealed routes of leukemic differentiation.
View Article and Find Full Text PDF