Publications by authors named "Sergey V Yarotsky"

The thermostable endo-processive xyloglucanase MtXgh74 from Myceliophthora thermophila was used to study the influence of aromatic amino acids in the catalytic cleft on the mode of action and the ability of enzyme to reduce xyloglucan viscosity. The enzyme derivative Mut I with mutations W64A/W67A in the "negative" subsites of the catalytic cleft resulted in a 5.5-fold increase of the K value.

View Article and Find Full Text PDF

In spite of intensive exploitation of aspergilli for the industrial production of carbohydrases, little is known about hydrolytic enzymes of fungi from the section Cervini. Novel glycoside hydrolases Bgh12A and Xgh12B from Aspergillus cervinus represent examples of divergent activities within one enzyme family and belong to the GH12 phylogenetic subgroup I (endo-(1,4)-β-glucanases) and II (endo-xyloglucanases), respectively. The bgh12A and xgh12B genes were identified in the unsequenced genome of A.

View Article and Find Full Text PDF

A xyloglucanase of the GH74 family was identified in the thermophilic fungus strain Myceliophthora thermophila VKPM F-244, and its gene sequence was optimized for cloning and expression in Pichia pastoris. The recombinant xyloglucanase MtXgh74 exhibited the highest activity toward tamarind seed xyloglucan with a K value of 0.51 ± 0.

View Article and Find Full Text PDF

Escherichia coli strain VKPM B-10182, obtained by chemical mutagenesis from E. coli strain ATCC 9637, produces cephalosporin acid synthetase employed in the synthesis of β-lactam antibiotics, such as cefazolin. The draft genome sequence of strain VKPM B-10182 revealed 32 indels and 1,780 point mutations that might account for the improvement in antibiotic synthesis that we observed.

View Article and Find Full Text PDF

A Lactobacillus brevis strain with the ability to synthesize butanol from glucose was constructed by metabolic engineering. The genes crt, bcd, etfB, etfA, and hbd, composing the bcs-operon, and the thl gene encode the enzymes of the lower part of the clostridial butanol pathway (crotonase, butyryl-CoA-dehydrogenase, two subunits of the electron transfer flavoprotein, 3-hydroxybutyryl-CoA dehydrogenase, and thiolase) of Clostridium acetobutylicum. They were cloned into the Gram-positive/Gram-negative shuttle plasmid vector pHYc.

View Article and Find Full Text PDF