Motivated by neutral excitations in disordered electronic materials and systems of trapped ultracold particles with long-range interactions, we study energy-level statistics of quasiparticles with the power-law hopping Hamiltonian in a strong random potential. In solid-state systems such quasiparticles, which are exemplified by neutral dipolar excitations, lead to long-range correlations of local observables and may dominate energy transport. Focussing on the excitations in disordered electronic systems, we compute the energy-level correlation function in a finite system in the limit of sufficiently strong disorder.
View Article and Find Full Text PDFWeyl fermions are massless chiral particles first predicted in 1929 and once thought to describe neutrinos. Although never observed as elementary particles, quasiparticles with Weyl dispersion have recently been experimentally discovered in solid-state systems causing a furore in the research community. Systems with Weyl excitations can display a plethora of fascinating phenomena and offer great potential for improved quantum technologies.
View Article and Find Full Text PDFSpin-orbit coupling in solids normally originates from the electron motion in the electric field of the crystal. It is key to understanding a variety of spin-transport and topological phenomena, such as Majorana fermions and recently discovered topological insulators. Implementing and controlling spin-orbit coupling is thus highly desirable and could open untapped opportunities for the exploration of unique quantum physics.
View Article and Find Full Text PDF