Publications by authors named "Sergey V Saveliev"

The proximal caudal vertebrae and notochord in thick-toed geckos (TG) (, Gray, 1864) were investigated after a 30-day space flight onboard the biosatellite Bion-M1. This region has not been explored in previous studies. Our research focused on finding sites most affected by demineralization caused by microgravity (G0).

View Article and Find Full Text PDF

Background: The formation of concrements in human pineal gland (PG) is a physiological process and, according to many researchers, is associated with the involution of PG structures. The majority of scientific publications concern progressive calcification of PG, leaving out studies on the destruction of already formed calcified concrements. Our study fills the gap in knowledge about calcified zones destruction in PG in normal aging and neuropathological conditions, which has not been addressed until now.

View Article and Find Full Text PDF

The Mongolian gerbil displays unique physiological and anatomical features that make this species an attractive object for biological experiments in space. However, until recently, the Mongolian gerbil has remained a novel, mostly unstudied animal model in investigating bone loss in weightlessness (G). After 12 days of orbital Foton-M3 mission, the humerus of Mongolian gerbils has been studied here micro-computed tomography (micro-CT) to quantify bone morphometric parameters.

View Article and Find Full Text PDF

Background: The sympathetic nervous system plays an important role in the regulation of pancreatic exocrine and endocrine secretion. The results of experimental studies also demonstrate the involvement of the sympathetic nervous system in the regulation of endocrine cell differentiation and islet formation during the development of the pancreas. However, the prenatal development of sympathetic innervation of the human pancreas has not yet been studied.

View Article and Find Full Text PDF

In the human pancreas, various forms of endocrine cell arrangement are found: single endocrine cells, endocrine cell clusters, and mantel, bipolar and mosaic cell (mixed) islets. Our aim was to analyse the distribution and dynamics of insulin-, glucagon- and somatostatin-containing cells within the various forms of endocrine pancreas arrangement during human prenatal development and in adults and to suggest a mechanism of change in the endocrine cell ratio in adult islets. Pancreatic autopsies derived from human foetuses from the 10 to the 40 weeks of development and from adults were examined using histological, immunohistochemical and morphometric methods.

View Article and Find Full Text PDF

Background: Expression of the intermediate filament protein vimentin has been recently observed in the pancreatic islet β- and α-cells of humans with type 2 diabetes mellitus. It was suggested that the presence of vimentin in endocrine cells may indicate islet tissue renewal, or potentially represent the dedifferentiation of endocrine cells, which could contribute to the onset of type 2 diabetes or islet cell dysfunction.

Aim: To analyze the expression of vimentin in pancreatic β- and α-cells of macrosomic infants of diabetic and nondiabetic mothers.

View Article and Find Full Text PDF

The ontogeny of the neuro-insular complexes (NIC) and the islets innervation in human pancreas has not been studied in detail. Our aim was to describe the developmental dynamics and distribution of the nervous system structures in the endocrine part of human pancreas. We used double-staining with antibodies specific to pan-neural markers [neuron-specific enolase (NSE) and S100 protein] and to hormones of pancreatic endocrine cells.

View Article and Find Full Text PDF