Publications by authors named "Sergey V Rozhkov"

Currently, no ideal treatment exists to combat skeletal muscle disuse-induced atrophy and loss of strength. Because the activity of AMP-activated protein kinase (AMPK) in rat soleus muscle is suppressed at the early stages of disuse, we hypothesized that pre-treatment of rats with metformin (an AMPK activator) would exert beneficial effects on skeletal muscle during disuse. Muscle disuse was performed via hindlimb suspension (HS).

View Article and Find Full Text PDF

Regrowth of atrophied myofibers depends on muscle satellite cells (SCs) that exist outside the plasma membrane. Muscle atrophy appears to result in reduced number of SCs due to apoptosis. Given reduced AMP-activated protein kinase (AMPK) activity during differentiation of primary myoblasts derived from atrophic muscle, we hypothesized that there may be a potential link between AMPK and susceptibility of differentiating myoblasts to apoptosis.

View Article and Find Full Text PDF

Prolonged inactivity of skeletal muscles due to limb immobilization, bedrest, and exposure to microgravity results in a significant muscle atrophy. Inactivity-induced muscle atrophy is caused by a downregulation of protein synthesis (PS) and increased proteolysis. Mechanistic target of rapamycin complex 1 (mTORC1) is considered to be one of the main regulators of translational capacity (quantity of ribosomes), a key determinant of PS.

View Article and Find Full Text PDF

The structure and function of soleus muscle fibers undergo substantial remodeling under real or simulated microgravity conditions. However, unloading-induced changes in the functional activity of skeletal muscle primary myoblasts remain poorly studied. The purpose of our study was to investigate how short-term and long-term mechanical unloading would affect cultured myoblasts derived from rat soleus muscle.

View Article and Find Full Text PDF
Article Synopsis
  • Prolonged exposure to microgravity or disuse significantly decreases muscle protein synthesis and muscle mass, largely due to reduced ribosome content.
  • A study tested the hypothesis that inhibiting glycogen synthase kinase-3 (GSK-3), a negative regulator of protein synthesis, would help mitigate these effects during hindlimb suspension in rats.
  • Results showed that GSK-3 inhibition partially prevented the downregulation of ribosome biogenesis markers and muscle protein synthesis, suggesting a possible strategy to combat muscle loss in disuse conditions.
View Article and Find Full Text PDF

It is known that plantar mechanical stimulation (PMS) is able to attenuate unloading-induced skeletal muscle atrophy and impaired muscle function. However, molecular mechanisms underlying the effect of PMS on skeletal muscle during unloading remain undefined. The aim of the study was to evaluate the effects of PMS on anabolic and catabolic signaling pathways in rat soleus at the early stages of mechanical unloading.

View Article and Find Full Text PDF