Inorganic pyrophosphatases (PPases) catalyze an essential reaction, namely, the hydrolysis of PP, which is formed in large quantities as a side product of numerous cellular reactions. In the majority of living species, PP hydrolysis is carried out by soluble cytoplasmic PPase (S-PPases) with the released energy dissipated in the form of heat. In part of this energy can be conserved by proton-pumping pyrophosphatase (H-PPase) in the form of a proton electrochemical gradient for further ATP synthesis.
View Article and Find Full Text PDFA novel genome editing method for repeated introduction of foreign DNA, including insertion of rather large DNA fragments, into predesigned points in the Corynebacterium glutamicum chromosome was developed. The method is based on the implementation of the Dual-In/Out strategy, which was previously provided in Escherichia coli according to recombineering-based methods (Minaeva et al., 2008) and allowed step-by-step construction of marker-less plasmid free recombinant strains.
View Article and Find Full Text PDFDynamic control is a distinguished strategy in modern metabolic engineering, in which inducible convergent transcription is an attractive approach for conditional gene silencing. Instead of a simple strong "reverse" () promoter, a three-component actuator has been developed for constitutive genes silencing. These actuators, consisting of promoters with different strengths, the ribosomal transcription antitermination-inducing sequence -AT, and the RNase III processing site, were inserted into the 3'-UTR of three metabolic genes.
View Article and Find Full Text PDFThe genomes of two new lytic phages of Corynebacterium glutamicum ATCC 13032, φ673 and φ674, were sequenced and annotated (GenBank: MG324353, MG324354). Electron microscopy studies of both virions revealed that taxonomically they belong to the Siphoviridae family and have a polyhedral head with a width of 50 nm and a non-contractile tail with a length of 250 nm. The genomes of φ673 and φ674 consist of linear double-stranded DNA molecules with lengths of 44,530 bp (G+C = 51.
View Article and Find Full Text PDFBackground: In the L-histidine (His) biosynthetic pathway of Escherichia coli, the first key enzyme, ATP-phosphoribosyltransferase (ATP-PRT, HisG), is subject to different types of inhibition. Eliminating the feedback inhibition of HisG by the His end product is an important step that enables the oversynthesis of His in breeding strains. However, the previously reported feedback inhibition-resistant mutant enzyme from E.
View Article and Find Full Text PDFA dual-component Mu-transposition system was modified for the integration/amplification of genes in Corynebacterium. The system consists of two types of plasmids: (i) a non-replicative integrative plasmid that contains the transposing mini-Mu(LR) unit bracketed by the L/R Mu ends or the mini-Mu(LER) unit, which additionally contains the enhancer element, E, and (ii) an integration helper plasmid that expresses the transposition factor genes for MuA and MuB. Efficient transposition in the C.
View Article and Find Full Text PDFThe complete genome of ϕ16, a temperate corynephage from Corynebacterium glutamicum ATCC 21792, was sequenced and annotated (GenBank: KY250482). The electron microscopy study of ϕ16 virion confirmed that it belongs to the family Siphoviridae. The ϕ16 genome consists of a linear double-stranded DNA molecule of 58,200 bp (G+C = 52.
View Article and Find Full Text PDFBackground: Steady-state (13)C-based metabolic flux analysis ((13)C-MFA) is the most powerful method available for the quantification of intracellular fluxes. These analyses include concertedly linked experimental and computational stages: (i) assuming the metabolic model and optimizing the experimental design; (ii) feeding the investigated organism using a chosen (13)C-labeled substrate (tracer); (iii) measuring the extracellular effluxes and detecting the (13)C-patterns of intracellular metabolites; and (iv) computing flux parameters that minimize the differences between observed and simulated measurements, followed by evaluating flux statistics. In its early stages, (13)C-MFA was performed on the basis of data obtained in a single labeling experiment (SLE) followed by exploiting the developed high-performance computational software.
View Article and Find Full Text PDFBrevibacterium lactofermentum and Corynebacterium glutamicum are important biotechnology species of the genus Corynebacterium. The single-strand DNA annealing protein (SSAP)-independent oligonucleotide-mediated recombination procedure was successfully applied to the commonly used wild-type strains B. lactofermentum AJ1511 and C.
View Article and Find Full Text PDFThe genetic manipulation of cells is the most promising strategy for designing microorganisms with desired traits. The most widely used approaches for integrating specific DNA-fragments into the Escherichia coli genome are based on bacteriophage site-specific and Red/ET-mediated homologous recombination systems. Specifically, the recently developed Dual In/Out integration strategy enables the integration of DNA fragments directly into specific chromosomal loci (Minaeva et al.
View Article and Find Full Text PDFPantoea ananatis AJ13355 is a newly identified member of the Enterobacteriaceae family with promising biotechnological applications. This bacterium is able to grow at an acidic pH and is resistant to saturating concentrations of L-glutamic acid, making this organism a suitable host for the production of L-glutamate. In the current study, the complete genomic sequence of P.
View Article and Find Full Text PDFBackground: Plasmid-less, engineered Bacillus strains have several advantages over plasmid-carrier variants. Specifically, their stability and potential ecological safety make them of use in industrial applications. As a rule, however, it is necessary to incorporate many copies of a key gene into a chromosome to achieve strain performance that is comparable to that of cells carrying multiple copies of a recombinant plasmid.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
August 2011
The advantages of phage Mu transposition-based systems for the chromosomal editing of plasmid-less strains are reviewed. The cis and trans requirements for Mu phage-mediated transposition, which include the L/R ends of the Mu DNA, the transposition factors MuA and MuB, and the cis/trans functioning of the E element as an enhancer, are presented. Mini-Mu(LR)/(LER) units are Mu derivatives that lack most of the Mu genes but contain the L/R ends or a properly arranged E element in cis to the L/R ends.
View Article and Find Full Text PDFFEMS Microbiol Lett
May 2011
Pantoea ananatis accumulates gluconate during aerobic growth in the presence of glucose. Computer analysis of the P. ananatis SC17(0) sequenced genome revealed an ORF encoding a homologue (named gcd) of the mGDH (EC 1.
View Article and Find Full Text PDFYddG is an inner membrane protein (IMP) that exports aromatic amino acids in Escherichia coli. Topology models of YddG produced by sequence-based analysis in silico have predicted the presence of 9 or 10 potential transmembrane segments. To experimentally analyze the membrane topology of YddG, we used randomly created fusions to β-lactamase (BlaM) as a reporter.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
December 2010
DAHP synthase (EC 4.1.2.
View Article and Find Full Text PDFTo construct a Phe-producing Tyr(+) Escherichia coli strain, TyrA (chorismate mutase/prephenate dehydrogenase) activity was varied by engineering a proteolytically unstable protein. The tyrA in the E. coli BW25113 was altered to include ssrA-like tags.
View Article and Find Full Text PDFPykF is one of two pyruvate kinases in Escherichia coli K-12. lambdaP(L) was convergently integrated into the chromosome of the MG1655 strain, downstream of pykF, face-to-face with its native promoter. In the presence of lambdacIts857, efficient pykF ts-silencing was achieved when the 5'-terminus of the P(L)-originated antisense RNA (asRNA), consisting of the rrnG-AT sequence, converted elongation complexes of RNA polymerase to a form resistant to Rho-dependent transcription termination.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2010
The isolation of auxotrophic mutants, which is a prerequisite for a substantial genetic analysis and metabolic engineering of obligate methylotrophs, remains a rather complicated task. We describe a novel method of constructing mutants of the bacterium Methylophilus methylotrophus AS1 that are auxotrophic for aromatic amino acids. The procedure begins with the Mu-driven integration of the Escherichia coli gene aroP, which encodes the common aromatic amino acid transporter, into the genome of M.
View Article and Find Full Text PDFBackground: Pantoea ananatis, a member of the Enterobacteriacea family, is a new and promising subject for biotechnological research. Over recent years, impressive progress in its application to L-glutamate production has been achieved. Nevertheless, genetic and biotechnological studies of Pantoea ananatis have been impeded because of the absence of genetic tools for rapid construction of direct mutations in this bacterium.
View Article and Find Full Text PDFA phage Mu-driven two-plasmid system for DNA integration in Escherichia coli genome has been adjusted for Methylophilus methylotrophus. Constructed helper plasmids with broad-host-range replicons carry thermo-inducible genes for transposition factors MuA and MuB. Integrative plasmids that are only replicated in E.
View Article and Find Full Text PDFBMC Biotechnol
August 2008
Background: The development of modern producer strains with metabolically engineered pathways poses special problems that often require manipulating many genes and expressing them individually at different levels or under separate regulatory controls. The construction of plasmid-less marker-less strains has many advantages for the further practical exploitation of these bacteria in industry. Such producer strains are usually constructed by sequential chromosome modifications including deletions and integration of genetic material.
View Article and Find Full Text PDFBackground: RSF1010 is a well-studied broad-host-range plasmid able to be mobilized to different bacteria and plants. RSF1010-derived plasmid vectors are widely used in both basic research and industrial applications. In the latter case, exploiting of mobilizable plasmids or even the plasmids possessing negligible mobilization frequency, but containing DNA fragments that could promote conjugal transfer, is undesirable because of biosafety considerations.
View Article and Find Full Text PDF