The primary goal of this paper is to develop an approach for predicting important clinical indicators, which can be used to improve treatment. Using mathematical predictive modeling algorithms, we examined the course of COVID-19-based pneumonia (CP) with inpatient treatment. Algorithms used include dynamic and ordinary Bayesian networks (OBN and DBN), popular ML algorithms, the state-of-the-art auto ML approach and our new hybrid method based on DBN and auto ML approaches.
View Article and Find Full Text PDFThe paper presents a conceptual framework for building practically applicable clinical decision support systems (CDSSs) using data-driven (DD) predictive modelling. With the proposed framework we have tried to fill the gap between experimental CDSS implementations widely covered in the literature and solutions acceptable by physicians in daily practice. The framework is based on a three-stage approach where DD model definition is accomplished with practical norms referencing (scales, clinical recommendations, etc.
View Article and Find Full Text PDFStud Health Technol Inform
November 2021
The important information about a patient is often stored in a free-form text to describe the events in the patient's medical history. In this work, we propose and evaluate a hybrid approach based on rules and syntactical analysis to normalise temporal expressions and assess uncertainty depending on the remoteness of the event. A dataset of 500 sentences was manually labelled to measure the accuracy.
View Article and Find Full Text PDFStud Health Technol Inform
November 2021
We present a user acceptance study of a clinical decision support system (CDSS) for Type 2 Diabetes Mellitus (T2DM) risk prediction. We focus on how a combination of data-driven and rule-based models influence the efficiency and acceptance by doctors. To evaluate the perceived usefulness, we randomly generated CDSS output in three different settings: Data-driven (DD) model output; DD model with a presence of known risk scale (FINDRISK); DD model with presence of risk scale and explanation of DD model.
View Article and Find Full Text PDFBackground: Thyrotoxic atrial fibrillation (TAF) is a recognized significant complication of hyperthyroidism. Early identification of the individuals predisposed to TAF would improve thyrotoxic patients' management. However, to our knowledge, an instrument that establishes an individual risk of the condition is unavailable.
View Article and Find Full Text PDFStud Health Technol Inform
September 2020
Type 2 diabetes is one of the most common chronic diseases in the world. World Diabetes Federation experts predict that the diabetes patients' number by 2035 will increase by 205 million to reach 592 million. For health care, this diabetes type is one of the highest priority problems.
View Article and Find Full Text PDFIntroduction: An approach to building a hybrid simulation of patient flow is introduced with a combination of data-driven methods for automation of model identification. The approach is described with a conceptual framework and basic methods for combination of different techniques. The implementation of the proposed approach for simulation of the acute coronary syndrome (ACS) was developed and used in an experimental study.
View Article and Find Full Text PDF