Publications by authors named "Sergey Tsymbal"

Engineered calcium carbonate (CaCO) particles are extensively used as drug delivery systems due to their availability, biological compatibility, biodegradability, and cost-effective production. The synthesis procedure of CaCO particles, however, suffers from poor reproducibility. Furthermore, reducing the size of CaCO particles to <100 nm requires the use of additives in the reaction, which increases the total reaction time.

View Article and Find Full Text PDF

Copper-organic compounds have gained momentum as potent antitumor drug candidates largely due to their ability to generate an oxidative burst upon the transition of Cu to Cu triggered by the exogenous-reducing agents. We have reported the differential potencies of a series of Cu(II)-organic complexes that produce reactive oxygen species (ROS) and cell death after incubation with -acetylcysteine (NAC). To get insight into the structural prerequisites for optimization of the organic ligands, we herein investigated the electrochemical properties and the cytotoxicity of Cu(II) complexes with pyridylmethylenethiohydantoins, pyridylbenzothiazole, pyridylbenzimidazole, thiosemicarbazones and porphyrins.

View Article and Find Full Text PDF

The p53 protein is crucial for regulating cell survival and apoptosis in response to DNA damage. However, its influence on therapy effectiveness is controversial: when DNA damage is high p53 directs cells toward apoptosis, while under moderate genotoxic stress it saves the cells from death and promote DNA repair. Furthermore, these processes are influenced by the metabolism of transition metals, particularly copper since they serve as cofactors for critical enzymes.

View Article and Find Full Text PDF

Hyperactivation of the immune system remains a dramatic, life-threatening complication of viral and bacterial infections, particularly during pneumonia. Therapeutic approaches to counteract local and systemic outbreaks of cytokine storm and to prevent tissue damage remain limited. Cyclin-dependent kinases 8 and 19 (CDK8/19) potentiate transcriptional responses to the altered microenvironment, but CDK8/19 potential in immunoregulation is not fully understood.

View Article and Find Full Text PDF

With the increase in non-communicable diseases, cancer is becoming one of the most lethal ailments of the coming decades. Significant progress has been made in the development of NPs that combine diagnostic and therapeutic properties in a single system. Multimodal NPs that sequentially perform MRI diagnostics with increased contrast and then act as synergistic agents for magnetic hyperthermia and radiotherapy can be considered as next-generation anticancer drugs.

View Article and Find Full Text PDF

Treatment of drug-resistant forms of cancer requires consideration of their hallmark features, such as abnormal cell death mechanisms or mutations in drug-responding molecular pathways. Malignant cells differ from their normal counterparts in numerous aspects, including copper metabolism. Intracellular copper levels are elevated in various cancer types, and this phenomenon could be employed for the development of novel oncotherapeutic approaches.

View Article and Find Full Text PDF

The development of universal methods to synthesize materials with different structures is always in the researchers' focus. Despite the fact that various structures based on magnetite have already been obtained, synthetic approaches that allow to synthesize materials with a wide range of texture and functional properties are still very poorly presented. In this work, we demonstrate that a stable magnetite hydrosol can be easily converted into monolithic structures of xero-, cryo- and aerogel by careful varying concentrations and drying conditions.

View Article and Find Full Text PDF

Recently, the combined therapy has become one of the main approaches in cancer treatment. Combining different approaches may provide a significant outcome by triggering several death mechanisms or causing increased damage of tumor cells without hurting healthy ones. The supramolecular nanoplatform based on a high-Z metal reported here is a suitable system for the targeted delivery of chemotherapeutic compounds, imaging, and an enhanced radiotherapy outcome.

View Article and Find Full Text PDF

Copper-containing agents are promising antitumor pharmaceuticals due to the ability of the metal ion to react with biomolecules. In the current study, we demonstrate that inorganic Cu in the form of oxide nanoparticles (NPs) or salts, as well as Cu ions in the context of organic complexes (oxidation states +1, +1.5 and +2), acquire significant cytotoxic potency (2-3 orders of magnitude determined by IC values) in combinations with N-acetylcysteine (NAC), cysteine, or ascorbate.

View Article and Find Full Text PDF

For the widespread application of nanotechnology in biomedicine, it is necessary to obtain information about their safety. A critical problem is presented by the host immune responses to nanomaterials. It is assumed that the innate immune system plays a crucial role in the interaction of nanomaterials with the host organism.

View Article and Find Full Text PDF