We report the first lattice QCD computation of pion and kaon electromagnetic form factors, F_{M}(Q^{2}), at large momentum transfer up to 10 and 28 GeV^{2}, respectively. Utilizing physical masses and two fine lattices, we achieve good agreement with JLab experimental results at Q^{2}≲4 GeV^{2}. For Q^{2}≳4 GeV^{2}, our results provide ab initio QCD benchmarks for the forthcoming experiments at JLab 12 GeV and future electron-ion colliders.
View Article and Find Full Text PDFWe report the first lattice QCD calculation of pion valence quark distribution with next-to-next-to-leading order perturbative matching correction, which is done using two fine lattices with spacings a=0.04 and 0.06 fm and valence pion mass m_{π}=300 MeV, at boost momentum as large as 2.
View Article and Find Full Text PDFFundamental symmetry tests of baryon number violation in low-energy experiments can probe beyond the standard model (BSM) explanations of the matter-antimatter asymmetry of the Universe. Neutron-antineutron oscillations are predicted to be a signature of many baryogenesis mechanisms involving low-scale baryon number violation. This Letter presents first-principles calculations of neutron-antineutron matrix elements needed to accurately connect measurements of the neutron-antineutron oscillation rate to constraints on |ΔB|=2 baryon number violation in BSM theories.
View Article and Find Full Text PDF