Yakutia is one of the coldest permanently inhabited regions in the world, characterized by a subarctic climate with average January temperatures near -40 °C and the minimum below -60 °C. Recently, we demonstrated accelerated epigenetic aging of the Yakutian population in comparison to their Central Russian counterparts, residing in a considerably milder climate. In this paper, we analyzed these cohorts from the inflammaging perspective and addressed two hypotheses: a mismatch in the immunological profiles and accelerated inflammatory aging in Yakuts.
View Article and Find Full Text PDFChemical waves represent one of the fundamental behaviors that emerge in nonlinear, out-of-equilibrium chemical systems. They also play a central role in regulating behaviors and development of biological organisms. Nevertheless, understanding their properties and achieving their rational synthesis remains challenging.
View Article and Find Full Text PDFHerein, we obtained two supramolecular assemblies with layered structures from melamine, -methylmelamine, and hexynyl-cyanuric acid in water. By combination of X-ray diffraction, electron microscopy, and molecular dynamics studies, we found that introducing one methyl group in melamine alters the arrangement of the layers in these structures.
View Article and Find Full Text PDFThe construction of materials regulated by chemical reaction networks requires regulatory motifs that can be stacked together into systems with desired properties. Multiple autocatalytic reactions producing thiols are known. However, negative feedback loop motifs are unavailable for thiol chemistry.
View Article and Find Full Text PDFBackground: Yakuts are one of the indigenous populations of the subarctic and arctic territories of Siberia characterized by a continental subarctic climate with severe winters, with the regular January average temperature in the regional capital city of Yakutsk dipping below - 40 °C. The epigenetic mechanisms of adaptation to such ecologies and environments and, in particular, epigenetic age acceleration in the local population have not been studied before.
Results: This work reports the first epigenetic study of the Yakutian population using whole-blood DNA methylation data, supplemented with the comparison to the residents of Central Russia.
Alternating current (AC) electrolysis is receiving increased interest as a versatile tool for mild and selective electrochemical transformations. This work demonstrates that AC can enable the concept of a stirring-free electrochemical reactor where the periodic switch of electrode polarity, inherent to AC, provides uniform electrolysis across the whole volume of the reactor. Such design implies a straightforward approach for scaling up electrosynthesis.
View Article and Find Full Text PDFRegulating hydrogel actuators with chemical reaction networks is instrumental for constructing life-inspired smart materials. Herein, hydrogel actuators are engineered that are regulated by the autocatalytic front of thiols. The actuators consist of two layers.
View Article and Find Full Text PDFA general approach to fluorinated (hetero)aromatic derivatives is elaborated. The key reaction is a deoxofluorination of substituted acetophenones with sulfur tetrafluoride (SF). In contrast to previous deoxofluorination methods, this transformation is fast, scalable (up to 70 g), and high-yielding.
View Article and Find Full Text PDFCharacterization of magnetic particulate matter (PM) in coal fly ashes is critical to assessing the health risks associated with industrial coal combustion and for future applications of fine fractions that will minimize solid waste pollution. In this study, magnetic narrow fractions of fine ferrospheres related to environmentally hazardous PM, PM, and PM were for the first time separated from fly ash produced during combustion of Ekibastuz coal. It was determined that the average diameter of globules in narrow fractions is 1, 2, 3, and 7 μm.
View Article and Find Full Text PDFAutocatalytic reaction networks are instrumental for validating scenarios for the emergence of life on Earth and for synthesizing life de novo. Here, we demonstrate that dimeric thioesters of tripeptides with the general structure (Cys-Xxx-Gly-SEt) form strongly interconnected autocatalytic reaction networks that predominantly generate macrocyclic peptides up to 69 amino acids long. Some macrocycles of 6-12 amino acids were isolated from the product pool and were characterized by NMR spectroscopy and single-crystal X-ray analysis.
View Article and Find Full Text PDFAutocatalytic and oscillatory networks of organic reactions are important for designing life-inspired materials and for better understanding the emergence of life on Earth; however, the diversity of the chemistries of these reactions is limited. In this work, we present the thiol-assisted formation of guanidines, which has a mechanism analogous to that of native chemical ligation. Using this reaction, we designed autocatalytic and oscillatory reaction networks that form substituted guanidines from thiouronium salts.
View Article and Find Full Text PDFVarious deer species are infected with hepatitis E virus (HEV) and may be a source of zoonotic infection for humans. So far, HEV has not been isolated from reindeer and the role of this domesticated deer species in HEV transmission is unknown. We tested serum samples from 191 reindeer () and 86 adult reindeer herders from the circumpolar regions of Yakutia (Russian Federation) for anti-HEV and HEV RNA.
View Article and Find Full Text PDFThe coupling of transition-metal to photoredox catalytic cycles through single-electron transfer steps has become a powerful tool in the development of catalytic processes. In this work, we demonstrated that transition-metal catalysis can be coupled to alternating current (AC) through electron transfer steps that occur periodically at the same electrode. AC-assisted Ni-catalyzed amination, etherification, and esterification of aromatic bromides showed higher yields and selectivity compared to that observed in the control experiments with direct current.
View Article and Find Full Text PDFDiverse trifluoromethyl-substituted compounds were synthesized by deoxofluorination of cinnamic and (hetero)aromatic carboxylic acids with sulfur tetrafluoride. The obtained products were used as starting materials in the preparation of novel fluorinated amino acids, anilines, and aliphatic amines - valuable building blocks for medicinal chemistry and agrochemistry.
View Article and Find Full Text PDFNetwork autocatalysis, which is autocatalysis whereby a catalyst is not directly produced in a catalytic cycle, is likely to be more common in chemistry than direct autocatalysis is. Nevertheless, the kinetics of autocatalytic networks often does not exactly follow simple quadratic or cubic rate laws and largely depends on the structure of the network. In this article, we analyzed one of the simplest and most chemically plausible autocatalytic networks where a catalytic cycle is coupled to an ancillary reaction that produces the catalyst.
View Article and Find Full Text PDFHow simple chemical reactions self-assembled into complex, robust networks at the origin of life is unknown. This general problem-self-assembly of dissipative molecular networks-is also important in understanding the growth of complexity from simplicity in molecular and biomolecular systems. Here, we describe how heterogeneity in the composition of a small network of oscillatory organic reactions can sustain (rather than stop) these oscillations, when homogeneity in their composition does not.
View Article and Find Full Text PDFThis work describes the autocatalytic copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction between tripropargylamine and 2-azidoethanol in the presence of Cu(II) salts. The product of this reaction, tris-(hydroxyethyltriazolylmethyl)amine (N(CN)), accelerates the cycloaddition reaction (and thus its own production) by two mechanisms: (i) by coordinating Cu(II) and promoting its reduction to Cu(I) and (ii) by enhancing the catalytic reactivity of Cu(I) in the cycloaddition step. Because of the cooperation of these two processes, a rate enhancement of >400× is observed over the course of the reaction.
View Article and Find Full Text PDFThe work is focused on obtaining boundary conditions for a one-sided numerical model of thermoconvective instabilities in evaporating pinned sessile droplets of ethanol on heated substrates. In the one-sided model, appropriate boundary conditions for heat and mass transfer equations are required at the droplet surface. Such boundary conditions are obtained in the present work based on a derived semiempirical theoretical formula for the total droplet's evaporation rate, and on a two-parametric nonisothermal approximation of the local evaporation flux.
View Article and Find Full Text PDFThis work describes the development of magnetic levitation (MagLev) to characterize the kinetics of free-radical polymerization of water-insoluble, low-molecular-weight monomers that show a large change in density upon polymerization. Maglev measures density, and certain classes of monomers show a large change in density when monomers covalently join in polymer chains. MagLev characterized both the thermal polymerization of methacrylate-based monomers and the photopolymerization of methyl methacrylate and made it possible to determine the orders of reaction and the Arrhenius activation energy of polymerization.
View Article and Find Full Text PDFIn this research, we observe and rationalize theoretically the transition from hexagonal to cholesteric packing of double-stranded (ds) DNA in dispersion particles. The samples were obtained by phase exclusion of linear ds DNA molecules from water-salt solutions of poly(ethylene glycol)-PEG-with concentrations ranging from 120 mg ml to 300 mg ml. In the range of PEG concentrations from 120 mg ml to 220 mg ml at room temperature, we find ds DNA molecule packing, typical of classical cholesterics.
View Article and Find Full Text PDFNetworks of organic chemical reactions are important in life and probably played a central part in its origin. Network dynamics regulate cell division, circadian rhythms, nerve impulses and chemotaxis, and guide the development of organisms. Although out-of-equilibrium networks of chemical reactions have the potential to display emergent network dynamics such as spontaneous pattern formation, bistability and periodic oscillations, the principles that enable networks of organic reactions to develop complex behaviours are incompletely understood.
View Article and Find Full Text PDF