Phytohormones play a crucial role in regulating growth, productivity, and development while also aiding in the response to diverse environmental changes, encompassing both biotic and abiotic factors. Phytohormone levels in soil and plant tissues are influenced by specific soil bacteria, leading to direct effects on plant growth, development, and stress tolerance. Specific plant growth-promoting bacteria can either synthesize or degrade specific plant phytohormones.
View Article and Find Full Text PDFBackground: Human immunodeficiency virus (HIV) infection is associated with pronounced oxidative stress, leading to the development of various virus-associated pathologies. A wealth of evidence suggests that, along with canonical enzymes of reactive oxygen species regulation, human blood contains antibodies with peroxidase, superoxide dismutase, and catalase activities. Here we show that the catalase activity of IgGs and their κκ-IgG, λλ-IgG, and κλ-IgG subfractions of HIV-infected individuals is significantly different compared to the healthy donors.
View Article and Find Full Text PDFAntibodies are protein molecules whose primary function is to recognize antigens. However, recent studies have demonstrated their ability to hydrolyze specific substrates, such as proteins, oligopeptides, and nucleic acids. In 2023, two separate teams of researchers demonstrated the proteolytic activity of natural plasma antibodies from COVID-19 convalescents.
View Article and Find Full Text PDFThe rapid development of vaccines is a crucial objective in modern biotechnology and molecular pharmacology. In this context, conducting research to expedite the selection of a potent immunogen is imperative. The candidate vaccine should induce the production of antibodies that can recognize the immunogenic epitopes of the target protein, resembling the ones found in recovered patients.
View Article and Find Full Text PDFObjective: Milk composition varies considerably and depends on paratypical, genetic, and epigenetic factors. MiRNAs belong to the class of small non-coding RNAs; they are one of the key tools of epigenetic control because of their ability to regulate gene expression at the post-transcriptional level. We compared the relative expression levels of miR-106b, miR-191, and miR-30d in milk to demonstrate the relationship between the content of these miRNAs with protein and fat components of milk in Holstein and Ayrshire cattle.
View Article and Find Full Text PDFThis review covers the literature data on plant growth-promoting bacteria in soil, which can fix atmospheric nitrogen, solubilize phosphates, produce and secrete siderophores, and may exhibit several different behaviors simultaneously. We discuss perspectives for creating bacterial consortia and introducing them into the soil to increase crop productivity in agrosystems. The application of rhizosphere bacteria-which are capable of fixing nitrogen, solubilizing organic and inorganic phosphates, and secreting siderophores, as well as their consortia-has been demonstrated to meet the objectives of sustainable agriculture, such as increasing soil fertility and crop yields.
View Article and Find Full Text PDFPlant growth-promoting bacteria are commonly used in agriculture, particularly for seed inoculation. Multispecies consortia are believed to be the most promising form of these bacteria. However, designing and modeling bacterial consortia to achieve desired phenotypic outcomes in plants is challenging.
View Article and Find Full Text PDFBiochemistry (Mosc)
September 2023
Antibodies against the receptor-binding domain of the SARS-CoV-2 spike protein (RBD S-protein) contribute significantly to the humoral immune response during coronavirus infection (COVID-19) and after vaccination. The main focus of the studies of the RBD epitope composition is usually concentrated on the epitopes recognized by the virus-neutralizing antibodies. The role of antibodies that bind to RBD but do not neutralize SARS-CoV-2 remains unclear.
View Article and Find Full Text PDFThe S-protein is the major antigen of the SARS-CoV-2 virus, against which protective antibodies are generated. The S-protein gene was used in adenoviral vectors and mRNA vaccines against COVID-19. While the primary function of antibodies is to bind to antigens, catalytic antibodies can hydrolyze various substrates, including nucleic acids, proteins, oligopeptides, polysaccharides, and some other molecules.
View Article and Find Full Text PDFAntibodies recognizing RBD and the S-protein have been previously demonstrated to be formed in humans after SARS-CoV-2 infection and vaccination with the Sputnik V adenovirus vaccine. These antibodies were found to be active when hydrolyzing FITC-labeled oligopeptides corresponding to linear epitopes of the S-protein. The thin-layer chromatography method allows the relative accumulation of the reaction product to be estimated but cannot identify hydrolysis sites.
View Article and Find Full Text PDFExtracellular vesicles (EVs), carriers of molecular signals, are considered a critical link in maintaining homeostasis in mammals. Currently, there is growing interest in studying the role of EVs, including exosomes (subpopulation of EVs), in animals of other evolutionary levels, including marine invertebrates. We have studied the possibility of obtaining appropriate preparations of EVs from whole-body extract of holothuria using a standard combination of centrifugation and ultracentrifugation.
View Article and Find Full Text PDFAntibody-dependent enhancement (ADE) has been shown previously for SARS-CoV-1, MERS-CoV, and SARS-CoV-2 infection in vitro. In this study, the first monoclonal antibody (mAb) that causes ADE in a SARS-CoV-2 in vivo model was identified. mAb RS2 against the SARS-CoV-2 S-protein was developed using hybridoma technology.
View Article and Find Full Text PDFExosomes are nanovesicles 40-120 nm in diameter secreted by almost all cell types and providing humoral intercellular interactions. Given the natural origin and high biocompatibility, the potential for loading various anticancer molecules and therapeutic nucleic acids inside, and the surface modification possibility for targeted delivery, exosomes are considered to be a promising means of delivery to cell cultures and experimental animal organisms. Milk is a unique natural source of exosomes available in semi-preparative and preparative quantities.
View Article and Find Full Text PDFCoronavirus disease (COVID-19), caused by the SARS-CoV-2 coronavirus, leads to various manifestations of the post-COVID syndrome, including diabetes, heart and kidney disease, thrombosis, neurological and autoimmune diseases and, therefore, remains, so far, a significant public health problem. In addition, SARS-CoV-2 infection can lead to the hyperproduction of reactive oxygen species (ROS), causing adverse effects on oxygen transfer efficiency, iron homeostasis, and erythrocytes deformation, contributing to thrombus formation. In this work, the relative catalase activity of the serum IgGs of patients recovered from COVID-19, healthy volunteers vaccinated with Sputnik V, vaccinated with Sputnik V after recovering from COVID-19, and conditionally healthy donors were analyzed for the first time.
View Article and Find Full Text PDFExosomes are nanovesicles with a 40-150 nm diameter and are essential for communication between cells. Literature data suggest that exosomes obtained from different sources (cell cultures, blood plasma, urea, saliva, tears, spinal fluid, milk) using a series of centrifugations and ultracentrifugations contain hundreds and thousands of different protein and nucleic acid molecules. However, most of these proteins are not an intrinsic part of exosomes; instead, they co-isolate with exosomes.
View Article and Find Full Text PDFSiderophores are synthesized and secreted by many bacteria, yeasts, fungi, and plants for Fe (III) chelation. A variety of plant-growth-promoting bacteria (PGPB) colonize the rhizosphere and contribute to iron assimilation by plants. These microorganisms possess mechanisms to produce Fe ions under iron-deficient conditions.
View Article and Find Full Text PDFSince the onset of the COVID-19 pandemic, numerous publications have appeared describing autoimmune pathologies developing after a coronavirus infection, with several papers reporting autoantibody production during the acute period of the disease. Several viral diseases are known to trigger autoimmune processes, and the appearance of catalytic antibodies with DNase activity is one of the earliest markers of several autoimmune pathologies. Therefore, we analyzed whether IgG antibodies from blood plasma of SARS-CoV-2 patients after recovery could bind and hydrolyze DNA.
View Article and Find Full Text PDFPhosphates are known to be essential for plant growth and development, with phosphorus compounds being involved in various physiological and biochemical reactions. Phosphates are known as one of the most important factors limiting crop yields. The problem of phosphorus deficiency in the soil has traditionally been solved by applying phosphate fertilizers.
View Article and Find Full Text PDFThe exact cellular and molecular mechanisms of multiple sclerosis and other autoimmune diseases have not been established. Autoimmune pathologies are known to be associated with faults in the immune system and changes in the differentiation profiles of bone marrow stem cells. This study analyzed various characteristics of experimental autoimmune encephalomyelitis (EAE) in 2D2 mice.
View Article and Find Full Text PDFUnlike many other viruses, HIV-1 is highly variable. The structure of the viral envelope changes as the infection progresses and is one of the biggest obstacles in developing an HIV-1 vaccine. HIV-1 infection can cause the production of various natural autoantibodies, including catalytic antibodies hydrolyzing DNA, myelin basic protein, histones, HIV-integrase, HIV-reverse transcriptase, β-casein, serum albumin, and some other natural substrates.
View Article and Find Full Text PDFThough hundreds of thousands of papers are currently being published on HIV/AIDS, only tens of hundreds of them are devoted to the antibodies generated during the disease. Most of these papers discuss antibodies in HIV/AIDS as a diagnostic tool, and some articles describe neutralizing antibodies as a promising treatment. In this paper, we used affinity chromatography and ELISA to isolate natural IgG from the blood of 26 HIV-infected patients.
View Article and Find Full Text PDFMother's milk provides newborns with various nutrients (e.g., enzymes, proteins, peptides, hormones, antibodies) that help babies grow and protect them from bacterial and viral infections.
View Article and Find Full Text PDFExosomes are 40-100 nm nanovesicles participating in intercellular communication and transferring various bioactive proteins, mRNAs, miRNAs, and lipids. During pregnancy, the placenta releases exosomes into the maternal circulation. Placental exosomes are detected in the maternal blood even in the first trimester of pregnancy and their numbers increase significantly by the end of pregnancy.
View Article and Find Full Text PDFExact mechanisms of autoimmune disease development are still yet unknown. However, it is known that the development of autoimmune diseases is associated with defects in the immune system, namely, the violation of the bone marrow hematopoietic stem cells (HSCs) differentiation profiles. Different characteristics of autoimmune reaction development in experimental autoimmune encephalomyelitis (EAE) prone Th mice characterizing T-lymphocytes response were analyzed using standard approaches.
View Article and Find Full Text PDF