Nanotubular hafnia arrays hold significant promise for advanced opto- and nanoelectronic applications. However, the known studies concern mostly the luminescent properties of doped HfO-based nanostructures, while the optical properties of nominally pure hafnia with optically active centers of intrinsic origin are far from being sufficiently investigated. In this work, for the first time we have conducted research on the wide-range temperature effects in the photoluminescence processes of anion-defective hafnia nanotubes with an amorphous and monoclinic structure, synthesized by the electrochemical oxidation method.
View Article and Find Full Text PDFThe utilization of InP-based biocompatible quantum dots (QDs) necessitates a comprehensive understanding of the structure-dependent characteristics influencing their optical behavior. The optimization of core/shell QDs for practical applications is of particular interest due to their reduced toxicity, enhanced photostability, and improved luminescence efficiency. This optimization involves analyzing thermally activated processes involving exciton and defect-related energy levels.
View Article and Find Full Text PDFIt is known that the unfavorable outcome in patients infected with SARS-CoV-2 may be associated with the development of complications caused by heart damage due to the direct virus action. The mechanism of these cardiovascular injuries caused by SARS-CoV-2 infection has not been fully understood; however, the study of COVID-19-associated myocardial microcirculatory dysfunction can represent the useful strategy to solving this challenge. Thus, here we aimed to study the ultrastructural organization of endothelial cells of myocardial capillaries in patients with COVID-19.
View Article and Find Full Text PDFMost of the light from blazars, active galactic nuclei with jets of magnetized plasma that point nearly along the line of sight, is produced by high-energy particles, up to around 1 TeV. Although the jets are known to be ultimately powered by a supermassive black hole, how the particles are accelerated to such high energies has been an unanswered question. The process must be related to the magnetic field, which can be probed by observations of the polarization of light from the jets.
View Article and Find Full Text PDFIn this work, we have simulated the processes of broadening the first exciton band in optical absorption spectra (OA) for InP/ZnS ensembles of colloidal quantum dots (QDs). A phenomenological model has been proposed that takes into account the effects of the exciton-phonon interaction, and allows one to analyze the influence of the static and dynamic types of atomic disorder on the temperature changes in the spectral characteristics in question. To vary the degree of static disorder in the model system, we have used a parameter δ, which characterizes the QD dispersion in size over the ensemble.
View Article and Find Full Text PDFBurkholderia mallei and B. pseudomallei are highly pathogenic microorganisms for both humans and animals. Moreover, they are regarded as potential agents of bioterrorism.
View Article and Find Full Text PDFThe minimally manipulated cells from fetal nervous and hemopoietic tissues (gestational age 16-22 weeks) were subarachnoidally implanted into 15 patients (18-52 years old) with severe consequences of traumatic spinal cord injury (SCI) at cervical or thoracic spine level. The times after SCI were from 1 month to 6 years. Each patient underwent from one to four cell transplantations (CT) with various time intervals.
View Article and Find Full Text PDF