Publications by authors named "Sergey S Seregin"

The activator and composition of the NLRP6 inflammasome remain poorly understood. We find that lipoteichoic acid (LTA), a molecule produced by Gram-positive bacteria, binds and activates NLRP6. In response to cytosolic LTA or infection with Listeria monocytogenes, NLRP6 recruited caspase-11 and caspase-1 via the adaptor ASC.

View Article and Find Full Text PDF

Tight junctions (TJs) involve close apposition of transmembrane proteins between cells. Although TJ proteins have been studied in detail, the role of lipids is largely unknown. We addressed the role of very long-chain (VLC ≥26) ceramides in TJs using diabetes-induced loss of the blood-retinal barrier as a model.

View Article and Find Full Text PDF
Article Synopsis
  • Dysbiosis and dysfunction in immune responses are linked to inflammatory bowel disease (IBD), but the exact mechanisms are still unclear.
  • NLRP6, an innate immune receptor, is crucial for regulating interleukin-18 production and preventing spontaneous colitis in a mouse model of IBD.
  • The study found that a lack of NLRP6 leads to an increase in the gut bacterium Akkermansia muciniphila, which can trigger intestinal inflammation in genetically susceptible mice.
View Article and Find Full Text PDF

Chronic intestinal inflammation is a major risk factor for the development of colorectal cancer. Nod1, a member of the Nod-like receptor (NLR) family of pattern recognition receptors, is a bacterial sensor that has been previously demonstrated to reduce susceptibility of mice to chemically induced colitis and subsequent tumorigenesis, but the mechanism by which it mediates its protection has not been elucidated. In this study, we show that Nod1 expression in the hematopoietic cell compartment is critical for limiting inflammation-induced intestinal tumorigenesis.

View Article and Find Full Text PDF

The CD2-like receptor activating cytotoxic cell (CRACC) receptor is a member of the SLAM family of receptors that are found on several types of immune cells. We previously demonstrated that increasing the abundance of the adaptor protein EAT-2 during vaccination enhanced innate and adaptive immune responses to vaccine antigens. Engagement of the CRACC receptor in the presence of the EAT-2 adaptor generally results in immune cell activation, while activating CRACC signaling in cells that lack EAT-2 adaptor inhibits their effector and regulatory functions.

View Article and Find Full Text PDF

There is a compelling need for more effective vaccine adjuvants to augment induction of Ag-specific adaptive immune responses. Recent reports suggested the bacterial second messenger bis-(3'-5')-cyclic-dimeric-guanosine monophosphate (c-di-GMP) acts as an innate immune system modulator. We recently incorporated a Vibrio cholerae diguanylate cyclase into an adenovirus vaccine, fostering production of c-di-GMP as well as proinflammatory responses in mice.

View Article and Find Full Text PDF

A small pool of NK1.1(+) CD8(+) T cells is harbored among the conventional CD8(+) T cell compartment. Conclusions drawn from the analysis of immune responses mediated by cytotoxic CD8(+) T cells are often based on the total population, which includes these contaminating NK1.

View Article and Find Full Text PDF

Endoplasmic reticulum aminopeptidase 1 (ERAP1) gene polymorphisms have been linked to several autoimmune diseases; however, the molecular mechanisms underlying these associations are not well understood. Recently, we demonstrated that ERAP1 regulates key aspects of the innate immune response. Previous studies show ERAP1 to be endoplasmic reticulum-localized and secreted during inflammation.

View Article and Find Full Text PDF

The bacterial second messenger cyclic di-GMP (c-di-GMP) stimulates inflammation by initiating innate immune cell recruitment and triggering the release of proinflammatory cytokines and chemokines. These properties make c-di-GMP a promising candidate for use as a vaccine adjuvant, and numerous studies have demonstrated that administration of purified c-di-GMP with different antigens increases protection against infection in animal models. Here, we have developed a novel approach to produce c-di-GMP inside host cells as an adjuvant to exploit a host-pathogen interaction and initiate an innate immune response.

View Article and Find Full Text PDF

Endoplasmic reticulum aminopeptidase 1 (ERAP1) is a critical component of the adaptive immune system that has been shown to increase or decrease the presentation of specific peptides on MHC class I molecules. Here, we have demonstrated that ERAP1 functions are not only important during the presentation of antigen-derived peptides, but these functions can also completely change which antigen-derived peptides ultimately become selected as immunodominant T-cell epitopes. Our results suggest that ERAP1 may do this by destroying epitopes that would otherwise become immunodominant in the absence of adequate ERAP1 functionality.

View Article and Find Full Text PDF

The signaling lymphocytic activation molecule (SLAM) receptor-associated adaptor Ewing's sarcoma-associated transcript-2 (EAT-2) is primarily expressed in innate immune cells including dendritic cells (DCs), macrophages and NK cells. A recent human HIV vaccine study confirmed that EAT-2 expression was associated with the enhanced immunogenicity induced by the MRKAd5/HIV vaccine. We previously harnessed the capability of EAT-2 to modulate signaling mediated by SLAM receptors and demonstrated that by incorporating EAT-2 expression into vaccines, one could enhance innate and adaptive immune responses in mice, even in the face of pre-existing immunity to the vaccine vectors.

View Article and Find Full Text PDF

Intracellular aminopeptidases endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and ERAP2), and as well as insulin-regulated aminopeptidase (IRAP) process antigenic epitope precursors for loading onto MHC class I molecules and regulate the adaptive immune response. Their activity greatly affects the antigenic peptide repertoire presented to cytotoxic T lymphocytes and as a result can regulate cytotoxic cellular responses contributing to autoimmunity or immune evasion by viruses and cancer cells. Therefore, pharmacological regulation of their activity is a promising avenue for modulating the adaptive immune response with possible applications in controlling autoimmunity, in boosting immune responses to pathogens, and in cancer immunotherapy.

View Article and Find Full Text PDF

Ankylosing spondylitis (AS) is a chronic systemic arthritic disease that leads to significant disability and loss of quality of life in the ∼0.5% of the worldwide human population it affects. There is currently no cure for AS and mechanisms underlying its pathogenesis remain unclear.

View Article and Find Full Text PDF

Endoplasmic reticulum aminopeptidase-1 (ERAP1) is a multifunctional, ubiquitously expressed enzyme whose peptide-trimming role during antigen processing for presentation by MHC I molecules is well established, however, a role for ERAP1 in modulating global innate immune responses has not been described to date. Here we demonstrate that, relative to wild type mice, mice lacking ERAP1 exhibit exaggerated innate immune responses early during pathogen recognition, as characterized by increased activation of splenic and hepatic NK and NKT cells and enhanced production of pro-inflammatory cytokines such as IL12 and MCP1. Our data also revealed that ERAP1 is playing a critical role in NK cell development and function.

View Article and Find Full Text PDF

The safe and effective activation of the innate and adaptive immune systems are crucial in the implementation of immunotherapeutic modalities for the prevention and treatment of human diseases. Eimeria antigen (EA) and its recombinantly expressed analog (rEA) are extremely effective activators of innate immunity in mice. The effects of rEA in the mouse are primarily mediated through the TLR11/12 MyD88 signaling system.

View Article and Find Full Text PDF

The mixed results from recent vaccine clinical trials targeting HIV-1 justify the need to enhance the potency of HIV-1 vaccine platforms in general. Use of first-generation recombinant adenovirus serotype 5 (rAd5) platforms failed to protect vaccinees from HIV-1 infection. One hypothesis is that the rAd5-based vaccine failed due to the presence of pre-existing Ad5 immunity in many vaccines.

View Article and Find Full Text PDF

Background: Induction of potent long lasting effector T cell responses against liver stage malaria antigens strongly correlates with protection from malaria. While Adenovirus serotype 5 (Ad5) based malaria vaccine platforms have the ability to induce potent effector T cell responses against transgenes, high rates of pre-existing Ad5 immunity in malaria endemic regions has prompted study of alternative Ad serotype based malaria vaccines as replacements for Ad5 based malaria vaccines. The research described in this article examines the utility of alternative serotype adenovirus serotype 4 (Ad4) expressing a sporozoite surface protein (circumsporozoite protein (CSP)) (Ad4-CSP) to induce immune responses against CSP.

View Article and Find Full Text PDF
Article Synopsis
  • Clostridium difficile associated diarrhea (CDAD) is a major public health issue, causing over 300,000 cases each year in the U.S., highlighting the urgent need for an effective vaccine.
  • The study developed a potent Adenovirus-based vaccine that successfully elicited strong immune responses in mice, providing complete protection against lethal C. difficile toxin A.
  • Key findings include the rapid detection of toxin A-specific antibodies and the discovery of important T-cell epitopes in toxin A, indicating a potentially significant role for cellular immunity in protection, making this vaccine a promising candidate for high-risk populations.
View Article and Find Full Text PDF

Adenovirus (Ad) based gene transfer vectors continue to be the platform of choice for an increasing number of clinical trials worldwide. In fact, within the last five years, the number of clinical trials that utilize Ad based vectors has doubled, indicating growing enthusiasm for the numerous positive characteristics of this gene transfer platform. For example, Ad vectors can be easily and relatively inexpensively produced to high titers in a cGMP compliant manner, can be stably stored and transported, and have a broad applicability for a wide range of clinical conditions, including both gene therapy and vaccine applications.

View Article and Find Full Text PDF

Background: Malaria greatly impacts the health and wellbeing of over half of the world's population. Promising malaria vaccine candidates have attempted to induce adaptive immune responses to Circumsporozoite (CS) protein. Despite the inclusion of potent adjuvants, these vaccines have limited protective efficacy.

View Article and Find Full Text PDF

Lysosomal Storage Diseases (LSDs) comprise a group of over fifty inherited metabolic disorders, with their hallmark feature being deficient catabolism and accumulation (storage) of macromolecules in the lysosomes due to genetic deficiency of specific lysosomal enzymes. The combined incidence of LSDs is estimated to be ~1 in 7,000 births. LSD symptoms can vary significantly, primarily due to the nature of the gene defect (null or missense mutations) as well as which cells are affected.

View Article and Find Full Text PDF

Despite recent advances in developing and licensing adjuvants, there is a great need for more potent formulations to enhance immunogenicity of vaccines. An Eimeria tenella derived antigen (rEA) augments immune responses against several pathogens in animal models and recently was confirmed to be safe for human use. In this study, we have analyzed the molecular mechanisms underlying rEA activity in mice, and confirmed that rEA activates multiple immune cell types, including DCs, macrophages, NK, B, and T cells.

View Article and Find Full Text PDF

Adenovirus (Ad)-based vectors are attractive candidates for a variety of gene-transfer applications. In this study, we found that decay-accelerating factor (DAF)-displaying Ads induce significantly decreased cellular immune responses to transgenes expressed from the vectors in both Ad5-naive and Ad5-immune mice. Specifically, we found a diminished ability of splenocytes to secrete interferon-γ after recall exposure to multiple peptides derived from antigens expressed by DAF-displaying Ads.

View Article and Find Full Text PDF

ER aminopeptidase 1 (ERAP1) customizes antigenic peptide precursors for MHC class I presentation and edits the antigenic peptide repertoire. Coding single nucleotide polymorphisms (SNPs) in ERAP1 were recently linked with predisposition to autoimmune disease, suggesting a link between pathogenesis of autoimmunity and ERAP1-mediated Ag processing. To investigate this possibility, we analyzed the effect that disease-linked SNPs have on Ag processing by ERAP1 in vitro.

View Article and Find Full Text PDF