Automated structure verification using (1)H NMR data or a combination of (1)H and heteronuclear single-quantum correlation (HSQC) data is gaining more interest as a routine application for qualitative evaluation of large compound libraries produced by synthetic chemistry. The goal of this automated software method is to identify a manageable subset of compounds and data that require human review. In practice, the automated method will flag structure and data combinations that exhibit some inconsistency (i.
View Article and Find Full Text PDFA method for structure validation based on the simultaneous analysis of a 1D (1)H NMR and 2D (1)H - (13)C single-bond correlation spectrum such as HSQC or HMQC is presented here. When compared with the validation of a structure by a 1D (1)H NMR spectrum alone, the advantage of including a 2D HSQC spectrum in structure validation is that it adds not only the information of (13)C shifts, but also which proton shifts they are directly coupled to, and an indication of which methylene protons are diastereotopic. The lack of corresponding peaks in the 2D spectrum that appear in the 1D (1)H spectrum, also gives a clear picture of which protons are attached to heteroatoms.
View Article and Find Full Text PDFA unique opportunity exists when an experimental NMR spectrum is obtained for which a specific chemical structure is anticipated. A process of Verification--the confirmation of a postulated structure--is now possible, as opposed to Elucidation-the de novo determination of a structure. A method for automated structure verification is suggested, which compares the chemical shifts, intensities and multiplicities of signals in an experimental 1H NMR spectrum with those from a predicted spectrum for the proposed structure.
View Article and Find Full Text PDF