Publications by authors named "Sergey Rozhok"

Scanning probe lithography (SPL) has witnessed a dramatic transformation with the advent of two-dimensional (2D) probe arrays. Although early work with single probes was justifiably assessed as being too slow to practically apply in a nanomanufacturing context, we have recently demonstrated throughputs up to 3x10(7) microm(2)/h--in some cases exceeding e-beam lithography--using centimeter square arrays of 55,000 tips tailored for Dip Pen Nanolithography (DPN). Parallelizing DPN has been critical because there exists a need for a lithographic process that is not only high throughput, but also high resolution (DPN has shown line widths down to 14 nm) with massive multiplexing capabilities.

View Article and Find Full Text PDF

A strategy to bind bacterial cells to surfaces in a directed fashion via dip-pen nanolithography (DPN) is presented. Cellular attachment to pre-designed DPN generated microarrays was found to be dependent on the shape and size of the surface feature. While this observation is likely due in part to a dense, well formed mercaptohexadecanoic acid (MHA) monolayer generated via DPN, it may also simply be due to the physical shape of the surface structure.

View Article and Find Full Text PDF

Selective attachment of Escherichia coli K-12 bacterial cells to charged gold surfaces was demonstrated. Electrostatic binding of E. coli K-12 bacterial cells to positively charged surfaces was observed starting at +750mV.

View Article and Find Full Text PDF

Motile bacterial cell microarrays were fabricated by attaching Escherichia coli K-12 cells onto predesigned 16-mercaptohexadecanoic acid patterned microarrays, which were covalently functionalized with E. coli antibodies or poly-L-lysine. By utilizing 11-mercaptoundecyl-penta(ethylene glycol) or 11-mercapto-1-undecanol as passivating molecules, nonspecific binding of E.

View Article and Find Full Text PDF

Construction of biomotors is an exciting area of scientific research that holds great promise for the development of new technologies with broad potential applications in areas such as the energy industry and medicine. Herein, we demonstrate the fabrication of prealigned microarrays of motile Escherichia coli bacterial cells on SiOx substrates. To prepare these arrays, holed surfaces with a gold layer on the bottom of the holes were utilized.

View Article and Find Full Text PDF