Currently, an increasing number of patients are undergoing extensive surgeries to restore the mucosa of the gums in the area of recessions. The use of a connective tissue graft from the palate is the gold standard of such surgical treatment, but complications, especially in cases of extensive defects, have led to the development of approaches using xenogeneic collagen matrices and methods to stimulate their regenerative and vasculogenic potential. This study investigated the potential of a xenogeneic scaffold derived from porcine skin Mucoderm and injections of the pCMV-VEGF165 plasmid ('Neovasculgen') to enhance soft gingival tissue volume and vascularization in an experimental model in rabbits.
View Article and Find Full Text PDFSerum albumin is a popular macromolecule for studying the effect of proteins on the colloidal stability of nanoparticle (NP) dispersions, as well as the protein-nanoparticle interaction and protein corona formation. In this work, we analyze the specific conformation-dependent phase, redox, and fatty acid delivery properties of bovine albumin in the presence of shungite carbon (ShC) molecular graphenes stabilized in aqueous dispersions in the form of NPs in order to reveal the features of NP bioactivity. The formation of NP complexes with proteins (protein corona around NP) affects the transport properties of albumin for the delivery of fatty acids.
View Article and Find Full Text PDFCurrently, no ideal treatment exists to combat skeletal muscle disuse-induced atrophy and loss of strength. Because the activity of AMP-activated protein kinase (AMPK) in rat soleus muscle is suppressed at the early stages of disuse, we hypothesized that pre-treatment of rats with metformin (an AMPK activator) would exert beneficial effects on skeletal muscle during disuse. Muscle disuse was performed via hindlimb suspension (HS).
View Article and Find Full Text PDFRegrowth of atrophied myofibers depends on muscle satellite cells (SCs) that exist outside the plasma membrane. Muscle atrophy appears to result in reduced number of SCs due to apoptosis. Given reduced AMP-activated protein kinase (AMPK) activity during differentiation of primary myoblasts derived from atrophic muscle, we hypothesized that there may be a potential link between AMPK and susceptibility of differentiating myoblasts to apoptosis.
View Article and Find Full Text PDFProlonged inactivity of skeletal muscles due to limb immobilization, bedrest, and exposure to microgravity results in a significant muscle atrophy. Inactivity-induced muscle atrophy is caused by a downregulation of protein synthesis (PS) and increased proteolysis. Mechanistic target of rapamycin complex 1 (mTORC1) is considered to be one of the main regulators of translational capacity (quantity of ribosomes), a key determinant of PS.
View Article and Find Full Text PDFThe structure and function of soleus muscle fibers undergo substantial remodeling under real or simulated microgravity conditions. However, unloading-induced changes in the functional activity of skeletal muscle primary myoblasts remain poorly studied. The purpose of our study was to investigate how short-term and long-term mechanical unloading would affect cultured myoblasts derived from rat soleus muscle.
View Article and Find Full Text PDFIt is known that plantar mechanical stimulation (PMS) is able to attenuate unloading-induced skeletal muscle atrophy and impaired muscle function. However, molecular mechanisms underlying the effect of PMS on skeletal muscle during unloading remain undefined. The aim of the study was to evaluate the effects of PMS on anabolic and catabolic signaling pathways in rat soleus at the early stages of mechanical unloading.
View Article and Find Full Text PDFThermal denaturation and aggregation of UV-irradiated β(L)-crystallin from eye lenses of steers have been studied. The data on size-exclusion chromatography and SDS-PAGE indicated that UV irradiation of β(L)-crystallin at 10 °С resulted in fragmentation of the protein molecule and formation of cross-linked aggregates. Fluorescence data showed that tryptophan fluorescence in the irradiated protein decreased exponentially with the UV dose.
View Article and Find Full Text PDFThermodynamic analysis of the water-protein-salt system, based on the description of the spinodal curve, has been carried out in various coordinate systems: (water chemical potential, protein concentration m(2)); (protein "solubility" log S, salt concentration m(3)); (effective temperature, critical composition of the system m(2)/m(3)). Such presentations explain the existence of diagrams with normal and retrograde protein solubility as a result of straightforward effect of ions present in solution as well as some features of the widely used phase diagram in coordinates (temperature, protein concentration). Analytic expressions for coefficients K and b of the salting out equation log S=-K.
View Article and Find Full Text PDF