Publications by authors named "Sergey Razin"

The coordination of chromatin remodeling is essential for DNA accessibility and gene expression control. The highly conserved and ubiquitously expressed SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex plays a central role in cell type- and context-dependent gene expression. Despite the absence of a defined DNA recognition motif, SWI/SNF binds lineage specific enhancers genome-wide where it actively maintains open chromatin state.

View Article and Find Full Text PDF

The enhancer-promoter looping model, in which enhancers activate their target genes via physical contact, has long dominated the field of gene regulation. However, the ubiquity of this model has been questioned due to evidence of alternative mechanisms and the lack of its systematic validation, primarily owing to the absence of suitable experimental techniques. In this study, we present a new MNase-based proximity ligation method called MChIP-C, allowing for the measurement of protein-mediated chromatin interactions at single-nucleosome resolution on a genome-wide scale.

View Article and Find Full Text PDF

DNA-dependent protein kinase (DNA-PK) is a key effector of non-homologous end joining (NHEJ)-mediated double-strand break (DSB) repair. Since its identification, a substantial body of evidence has demonstrated that DNA-PK is frequently overexpressed in cancer, plays a critical role in tumor development and progression, and is associated with poor prognosis in cancer patients. Recent studies have also uncovered novel functions of DNA-PK, shifting the paradigm of the role of DNA-PK in oncogenesis and renewing interest in targeting DNA-PK for cancer therapy.

View Article and Find Full Text PDF

The review analyzes the role of physicochemical processes in the formation of the function-dependent architecture of the cell nucleus, built on the platform of a folded genome. The main attention is paid to various forms of the phase separation process, primarily the processes of liquid-liquid phase separation and polymer-polymer phase separation. The role of these processes in the formation of chromatin compartments and maintenance of three-dimensional genome architecture is discussed in detail.

View Article and Find Full Text PDF

This essay is in memoriam of Ronald Hancock (1933 - 2022).

View Article and Find Full Text PDF
Article Synopsis
  • - Elys/Mel-28 is a nucleoporin (Nup) that connects decondensing chromatin with nuclear pore complexes (NPCs) after mitosis, but its role during interphase is unclear.
  • - Research using DamID-seq in Drosophila embryos identified different Elys binding sites within active or inactive chromatin, revealing its interaction with nucleoplasmic and NPC-linked forms.
  • - Knocking down Elys in S2 cells causes chromatin to move away from the nuclear envelope, leading to gene derepression, while also compacting active chromatin regions, suggesting Elys helps anchor peripheral chromatin to the nuclear envelope.
View Article and Find Full Text PDF
Article Synopsis
  • Chromatin structure plays a crucial role in determining gene expression and cell identity, especially in neurons, through the action of polycomb group (PcG) proteins.
  • A study mapping the 3D genome in neuronal and non-neuronal cells from the Wernicke's area shows that neurons have less separation between active and inactive gene regions compared to other brain cells.
  • Neuronal cells display unique chromatin interactions, including a specific network of PcG contacts linked to genes that control development, with a distinct pattern of histone modifications that suggest a functional significance of these interactions for neuron identity.
View Article and Find Full Text PDF
Article Synopsis
  • Sequence-based analysis of the microbiomes in fermented foods and beverages sheds light on their effects on taste and health, using advanced metagenomics techniques for detailed profiling.
  • A new Hi-C metagenomics pipeline was developed for analyzing spontaneously fermented beers and ciders, resulting in improved genome reconstruction of the bacterial and yeast populations involved.
  • Findings revealed significant diversity in microbial communities, particularly in Lactobacillaceae for beers and Brettanomyces and Saccharomyces for ciders, highlighting potential health benefits and niche adaptations of these organisms within their environments.
View Article and Find Full Text PDF

Trisomy is the presence of one extra copy of an entire chromosome or its part in a cell nucleus. In humans, autosomal trisomies are associated with severe developmental abnormalities leading to embryonic lethality, miscarriage or pronounced deviations of various organs and systems at birth. Trisomies are characterized by alterations in gene expression level, not exclusively on the trisomic chromosome, but throughout the genome.

View Article and Find Full Text PDF
Article Synopsis
  • The study highlights the ability to create various biologically active molecules, notably xylomannan and fucogalactan, which have potential anticancer properties, and points out the genetic variability among species affecting metabolite production.
  • The researchers used high-throughput shotgun sequencing to fully sequence the genome of strain 5.1, known for its xylomannan production, successfully enhancing the genome assembly to create 12 chromosome-level scaffolds.
  • The resulting genome sequence not only aids in understanding the biological mechanisms behind the species' medicinal use but also contributes to knowledge about fungal genomics and polysaccharide biosynthesis.
View Article and Find Full Text PDF

The first activation of gene expression during development (zygotic genome activation, ZGA) is accompanied by massive changes in chromosome organization. The connection between these two processes remains unknown. Using Hi-C for zebrafish embryos, we found that chromosome folding starts by establishing "fountains", novel elements of chromosome organization, emerging selectively at enhancers upon ZGA.

View Article and Find Full Text PDF

In this review, we consider various aspects of enhancer functioning in the context of the 3D genome. Particular attention is paid to the mechanisms of enhancer-promoter communication and the significance of the spatial juxtaposition of enhancers and promoters in 3D nuclear space. A model of an activator chromatin compartment is substantiated, which provides the possibility of transferring activating factors from an enhancer to a promoter without establishing direct contact between these elements.

View Article and Find Full Text PDF
Article Synopsis
  • - The study uses RedC, a proximity ligation method, to explore RNA-DNA interactions across the genomes of E. coli, B. subtilis, and T. adornatum, discovering key patterns in RNA distribution.
  • - It finds that messenger RNAs mostly interact with their related genes and those downstream, aligning with the polycistronic transcription concept, while ribosomal RNAs favor active protein-coding genes, suggesting a link between transcription and translation.
  • - Additionally, 6S noncoding RNA, which inhibits transcription, is found to be absent from active genes in E. coli and B. subtilis, highlighting RedC's potential for advancing our understanding of transcription dynamics and noncoding RNA functions in microbes.
View Article and Find Full Text PDF

Keratins are a family of intermediate filament-forming proteins highly specific to epithelial cells. A combination of expressed keratin genes is a defining property of the epithelium belonging to a certain type, organ/tissue, cell differentiation potential, and at normal or pathological conditions. In a variety of processes such as differentiation and maturation, as well as during acute or chronic injury and malignant transformation, keratin expression undergoes switching: an initial keratin profile changes accordingly to changed cell functions and location within a tissue as well as other parameters of cellular phenotype and physiology.

View Article and Find Full Text PDF

The chromatin interaction assays, particularly Hi-C, enable detailed studies of genome architecture in multiple organisms and model systems, resulting in a deeper understanding of gene expression regulation mechanisms mediated by epigenetics. However, the analysis and interpretation of Hi-C data remain challenging due to technical biases, limiting direct comparisons of datasets obtained in different experiments and laboratories. As a result, removing biases from Hi-C-generated chromatin contact matrices is a critical data analysis step.

View Article and Find Full Text PDF

The human genome is folded into a multi-level 3D structure that controls many nuclear functions including gene expression. Recently, alterations in 3D genome organization were associated with several genetic diseases and cancer. As a consequence, experimental approaches are now being developed to modify the global 3D genome organization and that of specific loci.

View Article and Find Full Text PDF

The review is devoted to the patterns of evolution of α- and β-globin gene domains. A hypothesis is presented according to which segregation of the ancestral cluster of α/β-globin genes in Amniota occurred due to the performance by α-globins and β-globins of non-canonical functions not related to oxygen transport.

View Article and Find Full Text PDF

The article reviews the development of ideas on the domain organization of eukaryotic genome, with special attention on the studies of DNA loops anchored to the nuclear matrix and their role in the emergence of the modern model of eukaryotic genome spatial organization. Critical analysis of results demonstrating that topologically associated chromatin domains are structural-functional blocks of the genome supports the notion that these blocks are fundamentally different from domains whose existence was proposed by the domain hypothesis of eukaryotic genome organization formulated in the 1980s. Based on the discussed evidence, it is concluded that the model postulating that eukaryotic genome is built from uniformly organized structural-functional blocks has proven to be untenable.

View Article and Find Full Text PDF

Dosage compensation equalizes gene expression in a single male X chromosome with that in the pairs of autosomes and female X chromosomes. In the fruit fly , canonical dosage compensation is implemented by the male-specific lethal (MSL) complex functioning in all male somatic cells. This complex contains acetyl transferase males absent on the first (MOF), which performs H4K16 hyperacetylation specifically in the male X chromosome, thus facilitating transcription of the X-linked genes.

View Article and Find Full Text PDF

Topoisomerase inhibitors are widely used in cancer chemotherapy. However, one of the potential long-term adverse effects of such therapy is acute leukemia. A key feature of such therapy-induced acute myeloid leukemia (t-AML) is recurrent chromosomal translocations involving or genes.

View Article and Find Full Text PDF

The cell nucleus is frequently considered a cage in which the genome is placed to protect it from various external factors. Inside the nucleus, many functional compartments have been identified that are directly or indirectly involved in implementing genomic DNA's genetic functions. For many years, it was assumed that these compartments are assembled on a proteinaceous scaffold (nuclear matrix), which provides a structural milieu for nuclear compartmentalization and genome folding while simultaneously offering some rigidity to the cell nucleus.

View Article and Find Full Text PDF

A new era in 3D genome studies began with the development of the so-called 'C-methods', used for the analysis of spatial contacts between distant genomic elements. However, the idea that spatial genome organization, partitioning of the genome into structural/functional units, and the functional compartmentalization of the cell nucleus are important for the implementation of key functions of the genome arose much earlier. In this Opinion article, we briefly overview how the concept of spatial genome organization has changed over recent decades, discuss current views on the 3D genome and cell nucleus organization, and compare the experimental evidence for the inter-relation between gene regulation and the 3D genome.

View Article and Find Full Text PDF

Imbalance in the finely orchestrated system of chromatin-modifying enzymes is a hallmark of many pathologies such as cancers, since causing the affection of the epigenome and transcriptional reprogramming. Here, we demonstrate that a loss-of-function mutation (LOF) of the major histone lysine methyltransferase SETDB1 possessing oncogenic activity in lung cancer cells leads to broad changes in the overall architecture and mechanical properties of the nucleus through genome-wide redistribution of heterochromatin, which perturbs chromatin spatial compartmentalization. Together with the enforced activation of the epithelial expression program, cytoskeleton remodeling, reduced proliferation rate and restricted cellular migration, this leads to the reversed oncogenic potential of lung adenocarcinoma cells.

View Article and Find Full Text PDF

Background: Understanding the role of various factors in 3D genome organization is essential to determine their impact on shaping large-scale chromatin units such as euchromatin (A) and heterochromatin (B) compartments. At this level, chromatin compaction is extensively modulated when transcription and epigenetic profiles change upon cell differentiation and response to various external impacts. However, detailed analysis of chromatin contact patterns within and between compartments is complicated because of a lack of suitable computational methods.

View Article and Find Full Text PDF

Gut microbiome in critically ill patients shows profound dysbiosis. The most vulnerable is the subgroup of chronically critically ill (CCI) patients - those suffering from long-term dependence on support systems in intensive care units. It is important to investigate their microbiome as a potential reservoir of opportunistic taxa causing co-infections and a morbidity factor.

View Article and Find Full Text PDF