Publications by authors named "Sergey Prikhodko"

Ionic liquids (ILs) form a variety of nanostructures due to their amphiphilic nature. Recently, unusual structural phenomena have been found in glassy ILs near their glass transition temperatures; however, in all studied cases, IL cations and anions were in the form of separate moieties. In this work, we investigate for the first time such structural anomalies in zwitterionic IL glasses (ZILs), where the cation and anion are bound in a single molecule.

View Article and Find Full Text PDF
Article Synopsis
  • API-ILs (Active Pharmaceutical Ingredient-Ionic Liquids) are gaining attention for their unique properties and potential drug applications.
  • This study uses Electron Paramagnetic Resonance (EPR) to investigate the nanostructuring in three types of API-ILs: [Cmim][Ibu], [Cmim][Gly], and [Cmim][Sal].
  • Findings show that API-ILs exhibit both similarities to and differences from common ILs, with [Cmim][Ibu] forming more complex structures due to a non-polar component in its anion, highlighting the significance of understanding these molecular arrangements.
View Article and Find Full Text PDF

The mechanical behavior of titanium alloys has been mostly studied in quasi-static conditions when the strain rate does not exceed 10 s, while the studies performed in dynamic settings specifically for Ti-based composites are limited. Such data are critical to prevent the "strength margin" approach, which is used to assure the part performance under dynamic conditions in the absence of relevant data. The purpose of this study was to obtain data on the mechanical behavior of Ti-based composites under dynamic condition.

View Article and Find Full Text PDF

Many ionic liquids (ILs) can be mixed with water, forming either true solutions or emulsions. This favors their applications in many respects, but at the same time might strongly alter their physicochemical properties. A number of methods exist for studying the macroscopic properties of such mixtures, whereas understanding their characteristics at micro/nanoscale is rather challenging.

View Article and Find Full Text PDF

Ionic liquid (IL) glasses have recently drawn much interest as unusual media with unique physicochemical properties. In particular, anomalous suppression of molecular mobility in imidazolium IL glasses vs. increasing temperature was evidenced by pulse Electron Paramagnetic Resonance (EPR) spectroscopy.

View Article and Find Full Text PDF

Intriguing heterogeneities and nanostructural reorganizations of glassy ionic liquids (ILs) have recently been found using electron paramagnetic resonance (EPR) spectroscopy. Alkyl chains of IL cations play the key role in such phenomena and govern the anomalous temperature dependence of local density and molecular mobility. In this paper we evidence and study similar manifestations in a variety of common non-IL glasses, which also contain molecules with alkyl chains.

View Article and Find Full Text PDF

Imidazolium Ionic Liquids (ILs) have been found to exhibit unusual nanostructuring behavior below their glass transition temperatures (Tg), which is ascribed to rearrangements in nonpolar domains formed by segregated alkyl chains. However, the dimensions required for such highly cooperative bulk phenomena are still unknown. In this work, we for the first time, investigate the effect of nanoconfinement on structural anomalies in imidazolium ILs.

View Article and Find Full Text PDF

Intriguing nanostructuring anomalies have been recently observed in imidazolium ionic liquids (ILs) near their glass transition points, where local density around a nanocaged solute progressively grows up with temperature. Herewith, we for the first time demonstrate experimentally and theoretically, that these anomalies are governed by alkyl chains of cations and crucially depend on their length. Electron Paramagnetic Resonance (EPR) spectroscopy on a series of ILs [Cmim]BF (n = 0-12) shows that only the chains with n = 3-10 favor anomaly.

View Article and Find Full Text PDF

Ionic liquids (ILs) show a variety of unusual and intriguing properties on a molecular level. Recently, a new type of structural anomaly occurring in neat ILs near their glass transition temperatures () has been found. In particular, the coexistence of two types of IL environments was observed, one of which progressively suppresses the molecular mobility upon temperature increase within ∼(-60 K) and .

View Article and Find Full Text PDF

Triarylmethyl (TAM) radicals have become widely used free radicals in the past few years. Their electron spins have long relaxation times and narrow electron paramagnetic resonance (EPR) lines, which make them an important class of probes and tags in biological applications and materials science. In this work, we propose a new approach to characterize librations by means of TAM radicals.

View Article and Find Full Text PDF

Unusual physical and chemical properties of ionic liquids (ILs) open up prospects for various applications. We report the first observation of density/rigidity heterogeneities in a series of ILs near the glass transition temperature ( T) by means of pulse electron paramagnetic resonance (EPR). Unprecedented suppression of molecular mobility is evidenced near the glass transition, which is assigned to unusual structural rearrangements of ILs on the nanometer scale.

View Article and Find Full Text PDF

Pd(111) thin films, ∼245 nm thick, are deposited on AlO(0001) substrates at ≈0.5, where is the Pd melting point, by ultrahigh vacuum dc magnetron sputtering of Pd target in pure Ar discharges. Auger electron spectra and low-energy electron diffraction patterns acquired from the as-deposited samples reveal that the surfaces are compositionally pure 111-oriented Pd.

View Article and Find Full Text PDF

Chip-scale integrated light sources are a crucial component in a broad range of photonics applications. III-V semiconductor nanowire emitters have gained attention as a fascinating approach due to their superior material properties, extremely compact size, and capability to grow directly on lattice-mismatched silicon substrates. Although there have been remarkable advances in nanowire-based emitters, their practical applications are still in the early stages due to the difficulties in integrating nanowire emitters with photonic integrated circuits.

View Article and Find Full Text PDF

We report on the first demonstration of InAs1-xSbx nanowires grown by catalyst-free selective-area metal-organic chemical vapor deposition (SA-MOCVD). Antimony composition as high as 15 % is achieved, with strong photoluminescence at all compositions. The quality of the material is assessed by comparing the photoluminescence (PL) peak full-width at half-max (fwhm) of the nanowires to that of epitaxially grown InAsSb thin films on InAs.

View Article and Find Full Text PDF

Pre-Columbian populations that inhabited the Tarapacá mid river valley in the Atacama Desert in Chile during the Middle Horizon and Late Intermediate Period (AD 500-1450) show patterns of chronic poisoning due to exposure to geogenic arsenic. Exposure of these people to arsenic was assessed using synchrotron-based elemental X-ray fluorescence mapping, X-ray absorption spectroscopy, X-ray diffraction and Fourier transform infrared spectromicroscopy measurements on ancient human hair. These combined techniques of high sensitivity and specificity enabled the discrimination between endogenous and exogenous processes that has been an analytical challenge for archeological studies and criminal investigations in which hair is used as a proxy of premortem metabolism.

View Article and Find Full Text PDF

Three-dimensional core-shell organic-inorganic hybrid solar cells with tunable properties are demonstrated via electropolymerization. Air-stable poly(3,4-ethylenedioxythiophene) (PEDOT) shells with controlled thicknesses are rapidly coated onto periodic GaAs nanopillar arrays conformally, preserving the vertical 3D structure. The properties of the organic layer can be readily tuned in situ, allowing for (1) the lowering of the highest occupied molecular orbital level (|ΔE| ∼ 0.

View Article and Find Full Text PDF

Purpose: To demonstrate, evaluate, and verify the existence of irreversible electroporation (IRE)-ablation induced nanopores on the plasma membrane of hepatocytes.

Materials And Methods: On animal research committee approval, four New Zealand rabbits and two Yorkshire swine underwent IRE ablation of the liver (90 pulses, 100 μs per pulse at 2,500 V), and selected ablated liver tissues were harvested, fixed, and air-dried according to the electron microscopy (EM) protocol. A scanning electron microscope (SEM; Nova 230 NanoSEM [FEI, Hillsboro, Oregon] with 80 picoamperes and 10-kV acceleration) was used to visualize and verify IRE-created nanopores.

View Article and Find Full Text PDF

Single crystalline, thermally stable, Co(3)O(4) (111) holey nano-sheets were prepared by an efficient, template-free, wet chemical synthetic approach. The high energy (111) surfaces formed can be used as highly active heterogeneous catalysts for methanol decomposition.

View Article and Find Full Text PDF

Carbon nanotubes are difficult to aerosolize in a controlled manner. We present a method for generating aerosols not only of carbon nanotubes, but also of many reference and proprietary materials including quantum dots, diesel particulate matter, urban dust, and their mixtures, using electrospraying. This method can be used as a teaching tool, or as the starting point for advanced research, or to deliver nanomaterials in animal exposure studies.

View Article and Find Full Text PDF

Controlling the morphological evolution in nanostructures is essential for improving their functionality, for example, in catalysis. Here, we demonstrate, using chromium oxide as a model system, that morphologies of functional binary oxide particles can be tailored by an efficient template-free synthetic approach. We construct a morphological "phase diagram" for chromium oxide spheres that shows the evolution of size and surface roughness as a function of the precursor and urea concentrations.

View Article and Find Full Text PDF

Vertical indium phosphide nanowires have been grown epitaxially on silicon (111) by metalorganic vapor-phase epitaxy. Liquid indium droplets were formed in situ and used to catalyze deposition. For growth at 350 degrees C, about 70% of the wires were vertical, while the remaining ones were distributed in the 3 other <111> directions.

View Article and Find Full Text PDF

Experimental difficulties in studying nanostructures stem from their small size, which limits the use of traditional techniques for measuring their physical properties. We have developed a nanostructure manipulation device to apply tension to chain aggregates mounted in a transmission electron microscope. A 1-mm-long slit was cut in the center of a lead-tin alloy disc, measuring 3 mm in diameter and 200 microm in thickness.

View Article and Find Full Text PDF