Publications by authors named "Sergey P Radko"

Article Synopsis
  • The ring rot of potato, caused by a bacterial pathogen, is a quarantine disease that threatens the global potato industry, making its detection crucial for control efforts.
  • A new detection system combines CRISPR/Cas13a with NASBA for identifying viable bacteria in potato tubers, allowing for both instrumental and visual detection methods.
  • The system shows a limit of detection as low as 1000 RNA copies per reaction and can be performed in under 2 hours, potentially serving as a routine on-site testing method.
View Article and Find Full Text PDF

The approach based on a combination of isothermal recombinase polymerase amplification (RPA), 2'-deoxyuridine-5'-triphosphate modified with tyrosine aromatic group (dUTP-Y1), and direct voltammetric detection of RPA product carrying electroactive labels was successfully applied to the potato pathogen Dickeya solani. The artificial nucleotide dUTP-Y1 demonstrated a good compatibility with RPA, enabling by targeting a section of D. solani genome with a unique sequence to produce the full-size modified products at high levels of substitution of dTTP by dUTP-Y1 (up to 80-90 %) in the reaction mixture.

View Article and Find Full Text PDF

Three novel 2'-deoxyuridine-5'-triphosphates modified with 4-nitrophenyl groups via various linkers (dUTP-N1, dUTP-N2, and dUTP-N3) were tested as bearers of reducible electroactive labels as well as substrates suitable for enzymes used in polymerase chain reaction (PCR) and recombinase polymerase amplification (RPA) with a potential application to direct electrochemical detection of double-stranded deoxyribonucleic acid (dsDNA). In cyclic and square wave voltammograms on carbon screen printed electrodes, the labeled dUTP have demonstrated distinct reduction peaks at potentials of -0.7 V to -0.

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on N6-methyladenosine (m6A) RNA modifications, highlighting their critical role in regulating RNA functions and cellular processes in HepG2 cells using Oxford Nanopore technology and the m6Anet algorithm.* -
  • Researchers identified 3,968 potential m6A modification sites across 2,851 transcripts linked to 1,396 genes, revealing their involvement in key processes like ubiquitination and transcription regulation, particularly relevant to cancer biology.* -
  • The study emphasizes the need for reproducibility in algorithmic analyses and found a strong correlation between transcriptomic and translatomic levels, contributing to a deeper understanding of m6A modifications' impacts on cellular functions.*
View Article and Find Full Text PDF

The 2'-deoxyuridine-5'-triphosphates modified with fluorescein (dUTP-Fl) or rhodamine (dUTP-Rh) were tested as bearers of electroactive labels and as proper substrates for polymerases used in polymerase chain reaction (PCR) and isothermal recombinase polymerase amplification (RPA) with the aim of electrochemical detection of double-stranded DNA (dsDNA) amplification products. For this purpose, electrochemical behavior of free fluorescein and rhodamine as well as the modified nucleotides, dUTP-Fl and dUTP-Rh, was studied by cyclic (CV) and square wave (SWV) voltammetry on carbon screen printed electrodes. Both free fluorescein and dUTP-Fl underwent a two-step oxidation at the peak potentials (E) of 0.

View Article and Find Full Text PDF

β-amyloid (Aβ) is comprised of a group of peptides formed as a result of cleavage of the amyloid precursor protein by secretases. Aβ aggregation is considered as a central event in pathogenesis of Alzheimer's disease, the most common human neurodegenerative disorder. Molecular mechanisms of Aβ aggregation have intensively being investigated using synthetic Aβ peptides by methods based on monitoring of aggregates, including determination of their size and structure.

View Article and Find Full Text PDF

It has been shown that the best coverage of the HepG2 cell line transcriptome encoded by genes of a single chromosome, chromosome 18, is achieved by a combination of two sequencing platforms, Illumina RNA-Seq and Oxford Nanopore Technologies (ONT), using cut-off levels of FPKM > 0 and TPM > 0, respectively. In this study, we investigated the extent to which the combination of these transcriptomic analysis methods makes it possible to achieve a high coverage of the transcriptome encoded by the genes of other human chromosomes. A comparative analysis of transcriptome coverage for various types of biological material was carried out, and the HepG2 cell line transcriptome was compared with the transcriptome of liver tissue cells.

View Article and Find Full Text PDF

Long-read direct RNA sequencing developed by Oxford Nanopore Technologies (ONT) is quickly gaining popularity for transcriptome studies, while fast turnaround time and low cost make it an attractive instrument for clinical applications. There is a growing interest to utilize transcriptome data to unravel activated biological processes responsible for disease progression and response to therapies. This trend is of particular interest for precision medicine which aims at single-patient analysis.

View Article and Find Full Text PDF

One of the main goals of the Chromosome-Centric Human Proteome Project (C-HPP) is detection of "missing proteins" (PE2-PE4). Using the UPS2 (Universal proteomics standard 2) set as a model to simulate the range of protein concentrations in the cell, we have previously shown that 2D fractionation enables the detection of more than 95% of UPS2 proteins in a complex biological mixture. In this study, we propose a novel experimental workflow for protein detection during the analysis of biological samples.

View Article and Find Full Text PDF

The coordination of zinc ions by histidine residues of amyloid-beta peptide (Aβ) plays a critical role in the zinc-induced Aβ aggregation implicated in Alzheimer's disease (AD) pathogenesis. The histidine to arginine substitution at position 6 of the Aβ sequence (H6R, English mutation) leads to an early onset of AD. Herein, we studied the effects of zinc ions on the aggregation of the Aβ42 peptide and its isoform carrying the H6R mutation (H6R-Aβ42) by circular dichroism spectroscopy, dynamic light scattering, turbidimetric and sedimentation methods, and bis-ANS and thioflavin T fluorescence assays.

View Article and Find Full Text PDF

The Chromosome-centric Human Proteome Project aims at characterizing the expression of proteins encoded in each chromosome at the tissue, cell, and subcellular levels. The proteomic profiling of a particular tissue or cell line commonly results in a substantial portion of proteins that are not observed (the "missing" proteome). The concurrent transcriptome profiling of the analyzed tissue/cells samples may help define the set of untranscribed genes in a given type of tissue or cell, thus narrowing the size of the "missing" proteome and allowing us to focus on defining the reasons behind undetected proteins, namely, whether they are technical (insufficient sensitivity of protein detection) or biological (correspond to not-translated transcripts).

View Article and Find Full Text PDF

This work continues the series of the quantitative measurements of the proteins encoded by different chromosomes in the blood plasma of a healthy person. Selected Reaction Monitoring with Stable Isotope-labeled peptide Standards (SRM SIS) and a gene-centric approach, which is the basis for the implementation of the international Chromosome-centric Human Proteome Project (C-HPP), were applied for the quantitative measurement of proteins in human blood plasma. Analyses were carried out in the frame of C-HPP for each protein-coding gene of the four human chromosomes: 18, 13, Y, and mitochondrial.

View Article and Find Full Text PDF

Angiotensin converting enzyme (ACE) is involved in proteolytic processing of the amyloid-β(Aβ) peptide implicated in the development of Alzheimer's disease (AD) and known products of ACE-based processing of Aβ42 are characterized by reduced aggregability and cytotoxicity. Recently it has been demonstrated that ACE can act as an arginine specific endopeptidase cleaving the N-terminal pentapeptide (Aβ1-5) from synthetic Aβ peptide analogues. In the context of proteolytic processing of full length Aβ42, this suggests possible formation of Aβ6-42 species.

View Article and Find Full Text PDF

The triggers of late-onset sporadic Alzheimer's disease (AD) are still poorly understood. Impairment of protein phosphorylation with age is well-known; however, the role of the phosphorylation in β-amyloid peptide (Aβ) is not studied sufficiently. Zinc-induced oligomerization of Aβ represents a potential seeding mechanism for the formation of neurotoxic Aβ oligomers and aggregates.

View Article and Find Full Text PDF

Cerebral β-amyloidosis, an accumulation in the patient's brain of aggregated amyloid-β (Aβ) peptides abnormally saturated by divalent biometal ions, is one of the hallmarks of Alzheimer's disease (AD). Earlier, we found that exogenously administrated synthetic Aβ with isomerized Asp7 (isoD7-Aβ) induces Aβ fibrillar aggregation in the transgenic mice model of AD. IsoD7-Aβ molecules have been implied to act as seeds enforcing endogenous Aβ to undergo pathological aggregation through zinc-mediated interactions.

View Article and Find Full Text PDF

Zinc-induced aggregation of amyloid-β peptides (Aβ) is considered to contribute to the pathogenesis of Alzheimer's disease. While glycosaminoglycans (GAGs) that are commonly present in interneuronal space are known to enhance Aβ self-aggregation in vitro, the impact of GAGs on the formation of zinc-induced amorphous Aβ aggregates has not yet been thoroughly studied. Here, employing dynamic light scattering, bis-ANS fluorimetry, and sedimentation assays, we demonstrate that heparin serving as a representative GAG modulates the kinetics of zinc-induced Aβ42 aggregation in vitro by slowing the rate of aggregate formation and aggregate size growth.

View Article and Find Full Text PDF

In this work targeted (selected reaction monitoring, SRM, PASSEL: PASS00697) and panoramic (shotgun LC-MS/MS, PRIDE: PXD00244) mass-spectrometric methods as well as transcriptomic analysis of the same samples using RNA-Seq and PCR methods (SRA experiment IDs: SRX341198, SRX267708, SRX395473, SRX390071) were applied for quantification of chromosome 18 encoded transcripts and proteins in human liver and HepG2 cells. The obtained data was used for the estimation of quantitative mRNA-protein ratios for the 275 genes of the selected chromosome in the selected tissues. The impact of methodological limitations of existing analytical proteomic methods on gene-specific mRNA-protein ratios and possible ways of overcoming these limitations for detection of missing proteins are also discussed.

View Article and Find Full Text PDF

A gene-centric approach was applied for a large-scale study of expression products of a single chromosome. Transcriptome profiling of liver tissue and HepG2 cell line was independently performed using two RNA-Seq platforms (SOLiD and Illumina) and also by Droplet Digital PCR (ddPCR) and quantitative RT-PCR. Proteome profiling was performed using shotgun LC-MS/MS as well as selected reaction monitoring with stable isotope-labeled standards (SRM/SIS) for liver tissue and HepG2 cells.

View Article and Find Full Text PDF

Amyloid-β peptide (Aβ) plays a central role in Alzheimer's disease (AD) pathogenesis. Besides extracellular Aβ, intraneuronal Aβ (iAβ) has been suggested to contribute to AD onset and development. Based on reported in vitro Aβ-DNA interactions and nuclear localization of iAβ, the interference of iAβ with the normal DNA expression has recently been proposed as a plausible pathway by which Aβ can exert neurotoxicity.

View Article and Find Full Text PDF

Aptamers are short single-stranded DNA or RNA oligonucleotides that can bind to their targets with high affinity and specificity. Usually, they are experimentally selected using the SELEX method. Here, we describe an approach toward the in silico selection of aptamers for proteins.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) was applied to carry out direct and label-free detection of gp120 human immunodeficiency virus type 1 envelope glycoprotein as a target protein. This approach was based on the AFM fishing of gp120 from the analyte solution using anti-gp120 aptamers immobilized on the AFM chip to count gp120/aptamer complexes that were formed on the chip surface. The comparison of image contrasts of fished gp120 against the background of immobilized aptamers and anti-gp120 antibodies on the AFM images was conducted.

View Article and Find Full Text PDF

We report the results obtained in 2012-2013 by the Russian Consortium for the Chromosome-centric Human Proteome Project (C-HPP). The main scope of this work was the transcriptome profiling of genes on human chromosome 18 (Chr 18), as well as their encoded proteome, from three types of biomaterials: liver tissue, the hepatocellular carcinoma-derived cell line HepG2, and blood plasma. The transcriptome profiling for liver tissue was independently performed using two RNaseq platforms (SOLiD and Illumina) and also by droplet digital PCR (ddPCR) and quantitative RT-PCR.

View Article and Find Full Text PDF

The interaction of the 16-mer synthetic peptide (Aβ16), which represents the metal-binding domain of the amyloid-β with DNA, was studied employing the surface plasmon resonance technique. It has been shown that Aβ16 binds to the duplex DNA in the presence of zinc ions and thus the metal-binding domain can serve as a zinc-dependent DNA-binding site of the amyloid-β. The interaction of Aβ16 with DNA most probably depends on oligomerization of the peptide and is dominated by interaction with phosphates of the DNA backbone.

View Article and Find Full Text PDF

The final goal of the Russian part of the Chromosome-centric Human Proteome Project (C-HPP) was established as the analysis of the chromosome 18 (Chr 18) protein complement in plasma, liver tissue and HepG2 cells with the sensitivity of 10(-18) M. Using SRM, we have recently targeted 277 Chr 18 proteins in plasma, liver, and HepG2 cells. On the basis of the results of the survey, the SRM assays were drafted for 250 proteins: 41 proteins were found only in the liver tissue, 82 proteins were specifically detected in depleted plasma, and 127 proteins were mapped in both samples.

View Article and Find Full Text PDF

The analytical separation and characterization of particles in the size range of sub-microm and microm diameters by capillary zone electrophoresis (CZE) has been reviewed. The theoretical basis, on which the mobility can be interpreted to provide information regarding characteristics of particle surface, has shortly been presented. Particular emphasis was put on the model dependence of that interpretation and the need in most applications to forego the classical idealized model of spherical particles with "smooth" surfaces and to apply more realistic models, which take the "hairy" surface of real particles into account.

View Article and Find Full Text PDF