Complex oxide heterointerfaces contain a rich playground of novel physical properties and functionalities, which give rise to emerging technologies. Among designing and controlling the functional properties of complex oxide film heterostructures, vertically aligned nanostructure (VAN) films using a self-assembling bottom-up deposition method presents great promise in terms of structural flexibility and property tunability. Here, the bottom-up self-assembly is extended to a new approach using a mixture containing a 2Dlayer-by-layer film growth, followed by a 3D VAN film growth.
View Article and Find Full Text PDFChiral materials are an ideal playground for exploring the relation between symmetry, relativistic effects and electronic transport. For instance, chiral organic molecules have been intensively studied to electrically generate spin-polarized currents in the last decade, but their poor electronic conductivity limits their potential for applications. Conversely, chiral inorganic materials such as tellurium have excellent electrical conductivity, but their potential for enabling the electrical control of spin polarization in devices remains unclear.
View Article and Find Full Text PDFA surge in interest of oxide-based materials is testimony for their potential utility in a wide array of device applications and offers a fascinating landscape for tuning the functional properties through a variety of physical and chemical parameters. In particular, selective electronic/defect doping has been demonstrated to be vital in tailoring novel functionalities, not existing in the bulk host oxides. Here, an extraordinary interstitial doping effect is demonstrated centered around a light element, boron (B).
View Article and Find Full Text PDFJ Phys Condens Matter
May 2017
Magnetoelectric coupling and spin polarization at the multiferroic PbTiO/LaSrMnO (PTO/LSMO) interface is studied from first principles in view of the recent experimental observation of the tunneling magnetoresistance sign inversion in Co/PZT/LSMO tunnel junctions (Pantel et al 2012 Nat. Mater. 11 289).
View Article and Find Full Text PDFA conducting 2D electron gas (2DEG) is formed at the interface between epitaxial LaFeO layers >3 unit cells thick and the surface of SrTiO single crystals. The 2DEG is exquisitely sensitive to cation intermixing and oxygen nonstoichiometry. It is shown that the latter thus allows the controllable formation of the 2DEG via ionic liquid gating, thereby forming a nonvolatile switch.
View Article and Find Full Text PDFWe predict a fast domain wall (DW) motion induced by a thermal gradient across a nanoscopic ferromagnetic stripe of MnBi. The driving mechanism is an exchange torque fueled by magnon accumulation at the DWs. Depending on the thickness of the sample, both hot-to-cold and cold-to-hot DW motion directions are possible.
View Article and Find Full Text PDFA multiferroic interface between the antiferromagnetic Slater insulator SrTcO3 and ferroelectric BaTiO3 (BTO) is studied from first principles. Although the interfacial magnetoelectric coupling of SrTcO3(001) is relatively small, we found that a two-dimensional electron gas (2DEG) appears for both BaO/TcO2 and TiO2/SrO terminations. The charge character of the carriers, induced in the band gap due to polar BTO, can be switched from electrons to holes by the reversal of the electric polarization in BTO.
View Article and Find Full Text PDFInelastic tunneling spectroscopy of Pb islands on Cu(111) obtained by scanning tunneling microscopy below 1 K provides a direct access to the local Eliashberg function of the islands with high energy resolution. The Eliashberg function describes the electron-phonon interaction causing conventional superconductivity. The measured Eliashberg function strongly depends on the local thickness of the Pb nanostructures and shows a sharp maximum when quantum well states of the Pb islands come close to the Fermi energy.
View Article and Find Full Text PDFSingle magnetic atoms, and assemblies of such atoms, on non-magnetic surfaces have recently attracted attention owing to their potential use in high-density magnetic data storage and as a platform for quantum computing. A fundamental problem resulting from their quantum mechanical nature is that the localized magnetic moments of these atoms are easily destabilized by interactions with electrons, nuclear spins and lattice vibrations of the substrate. Even when large magnetic fields are applied to stabilize the magnetic moment, the observed lifetimes remain rather short (less than a microsecond).
View Article and Find Full Text PDFThe effect of electron-impurity scattering on momentum and spin relaxation times in graphene is studied by means of relativistic ab initio calculations. Assuming carbon and silicon adatoms as natural impurities in graphene, we are able to simulate fast spin relaxation observed experimentally. We investigate the dependence of the relaxation times on the impurity position and demonstrate that C or Si adatoms act as real-space spin hot spots inducing spin-flip rates about 5 orders of magnitude larger than those of in-plane impurities.
View Article and Find Full Text PDFMagnetic anisotropy and magnetization dynamics of rare earth Gd atoms and dimers on Pt(111) and Cu(111) were investigated with inelastic tunneling spectroscopy. The spin excitation spectra reveal that giant magnetic anisotropies and lifetimes of the excited states of Gd are nearly independent of the supporting surfaces and the cluster size. In combination with theoretical calculations, we argue that the observed features are caused by strongly localized character of 4f electrons in Gd atoms and clusters.
View Article and Find Full Text PDF