Publications by authors named "Sergey Nurk"

The combination of ultra-long (UL) Oxford Nanopore Technologies (ONT) sequencing reads with long, accurate Pacific Bioscience (PacBio) High Fidelity (HiFi) reads has enabled the completion of a human genome and spurred similar efforts to complete the genomes of many other species. However, this approach for complete, "telomere-to-telomere" genome assembly relies on multiple sequencing platforms, limiting its accessibility. ONT "Duplex" sequencing reads, where both strands of the DNA are read to improve quality, promise high per-base accuracy.

View Article and Find Full Text PDF
Article Synopsis
  • Apes have two sex chromosomes: the essential Y chromosome for male reproduction and the X chromosome necessary for both reproduction and cognition, with differences in mating patterns affecting their function.
  • Studying these chromosomes is challenging due to their repetitive structures, but researchers created gapless assemblies for five great apes and one lesser ape to explore their evolutionary complexities.
  • The Y chromosomes are highly variable and undergo significant changes compared to the more stable X chromosomes, and this research can provide insights into human evolution and aid in the conservation of endangered ape species.
View Article and Find Full Text PDF
Article Synopsis
  • Human centromeres are challenging to sequence due to their large size and repetitive nature, limiting our understanding of their variation and evolutionary function.
  • Using long-read sequencing, researchers completely sequenced and assembled all centromeres from a second human genome, revealing a significant increase in genetic variation and size differences between centromeres.
  • Comparative analysis of centromeric sequences across species, including humans and great apes, highlights the rapid evolution of α-satellite DNA and suggests limited recombination between chromosome arms, aiding in studying centromeric DNA evolution.
View Article and Find Full Text PDF
Article Synopsis
  • Apes have two main sex chromosomes, X and Y, where Y is crucial for male reproduction and its deletions can lead to infertility, while X is important for both reproduction and brain function.
  • Recent advancements in genomic techniques helped researchers create complete structures of the X and Y chromosomes for multiple great ape species, allowing them to explore their evolutionary complexities.
  • Findings indicate that Y chromosomes are highly variable and undergo rapid changes due to unique genetic regions and transposable elements, while X chromosomes are more stable, highlighting differing evolutionary paths among great ape species.
View Article and Find Full Text PDF

The human Y chromosome has been notoriously difficult to sequence and assemble because of its complex repeat structure that includes long palindromes, tandem repeats and segmental duplications. As a result, more than half of the Y chromosome is missing from the GRCh38 reference sequence and it remains the last human chromosome to be finished. Here, the Telomere-to-Telomere (T2T) consortium presents the complete 62,460,029-base-pair sequence of a human Y chromosome from the HG002 genome (T2T-Y) that corrects multiple errors in GRCh38-Y and adds over 30 million base pairs of sequence to the reference, showing the complete ampliconic structures of gene families TSPY, DAZ and RBMY; 41 additional protein-coding genes, mostly from the TSPY family; and an alternating pattern of human satellite 1 and 3 blocks in the heterochromatic Yq12 region.

View Article and Find Full Text PDF

We completely sequenced and assembled all centromeres from a second human genome and used two reference sets to benchmark genetic, epigenetic, and evolutionary variation within centromeres from a diversity panel of humans and apes. We find that centromere single-nucleotide variation can increase by up to 4.1-fold relative to other genomic regions, with the caveat that up to 45.

View Article and Find Full Text PDF

Here the Human Pangenome Reference Consortium presents a first draft of the human pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort of genetically diverse individuals. These assemblies cover more than 99% of the expected sequence in each genome and are more than 99% accurate at the structural and base pair levels.

View Article and Find Full Text PDF

The Telomere-to-Telomere consortium recently assembled the first truly complete sequence of a human genome. To resolve the most complex repeats, this project relied on manual integration of ultra-long Oxford Nanopore sequencing reads with a high-resolution assembly graph built from long, accurate PacBio high-fidelity reads. We have improved and automated this strategy in Verkko, an iterative, graph-based pipeline for assembling complete, diploid genomes.

View Article and Find Full Text PDF
Article Synopsis
  • Evaluating metagenomic software is crucial for enhancing the interpretation of metagenomes, and the CAMI II challenge focused on this by using complex datasets from numerous genomes and plasmids.
  • The analysis of 5,002 results from 76 software versions showed significant advancements in assembly, especially with long-read data, although challenges remained with related strains and genome recovery.
  • Findings indicated that while taxon profilers improved, they struggled with viruses and Archaea, highlighting the need for better reproducibility in clinical pathogen detection and guiding researchers in method selection based on efficiency and performance metrics.
View Article and Find Full Text PDF

Since its initial release in 2000, the human reference genome has covered only the euchromatic fraction of the genome, leaving important heterochromatic regions unfinished. Addressing the remaining 8% of the genome, the Telomere-to-Telomere (T2T) Consortium presents a complete 3.055 billion-base pair sequence of a human genome, T2T-CHM13, that includes gapless assemblies for all chromosomes except Y, corrects errors in the prior references, and introduces nearly 200 million base pairs of sequence containing 1956 gene predictions, 99 of which are predicted to be protein coding.

View Article and Find Full Text PDF

Despite their importance in disease and evolution, highly identical segmental duplications (SDs) are among the last regions of the human reference genome (GRCh38) to be fully sequenced. Using a complete telomere-to-telomere human genome (T2T-CHM13), we present a comprehensive view of human SD organization. SDs account for nearly one-third of the additional sequence, increasing the genome-wide estimate from 5.

View Article and Find Full Text PDF

Existing human genome assemblies have almost entirely excluded repetitive sequences within and near centromeres, limiting our understanding of their organization, evolution, and functions, which include facilitating proper chromosome segregation. Now, a complete, telomere-to-telomere human genome assembly (T2T-CHM13) has enabled us to comprehensively characterize pericentromeric and centromeric repeats, which constitute 6.2% of the genome (189.

View Article and Find Full Text PDF

We introduce STrain Resolution ON assembly Graphs (STRONG), which identifies strains de novo, from multiple metagenome samples. STRONG performs coassembly, and binning into metagenome assembled genomes (MAGs), and stores the coassembly graph prior to variant simplification. This enables the subgraphs and their unitig per-sample coverages, for individual single-copy core genes (SCGs) in each MAG, to be extracted.

View Article and Find Full Text PDF

The complete assembly of each human chromosome is essential for understanding human biology and evolution. Here we use complementary long-read sequencing technologies to complete the linear assembly of human chromosome 8. Our assembly resolves the sequence of five previously long-standing gaps, including a 2.

View Article and Find Full Text PDF

Microbial natural products are important for the understanding of microbial interactions, chemical defense and communication, and have also served as an inspirational source for numerous pharmaceutical drugs. Tropical marine cyanobacteria have been highlighted as a great source of new natural products, however, few reports have appeared wherein a multi-omics approach has been used to study their natural products potential (i.e.

View Article and Find Full Text PDF

Complete and accurate genome assemblies form the basis of most downstream genomic analyses and are of critical importance. Recent genome assembly projects have relied on a combination of noisy long-read sequencing and accurate short-read sequencing, with the former offering greater assembly continuity and the latter providing higher consensus accuracy. The recently introduced Pacific Biosciences (PacBio) HiFi sequencing technology bridges this divide by delivering long reads (>10 kbp) with high per-base accuracy (>99.

View Article and Find Full Text PDF

Background: Graph-based representation of genome assemblies has been recently used in different contexts - from improved reconstruction of plasmid sequences and refined analysis of metagenomic data to read error correction and reference-free haplotype reconstruction. While many of these applications heavily utilize the alignment of long nucleotide sequences to assembly graphs, first general-purpose software tools for finding such alignments have been released only recently and their deficiencies and limitations are yet to be discovered. Moreover, existing tools can not perform alignment of amino acid sequences, which could prove useful in various contexts - in particular the analysis of metagenomic sequencing data.

View Article and Find Full Text PDF

As metagenomic studies move to increasing numbers of samples, communities like the human gut may benefit more from the assembly of abundant microbes in many samples, rather than the exhaustive assembly of fewer samples. We term this approach leaderboard metagenome sequencing. To explore protocol optimization for leaderboard metagenomics in real samples, we introduce a benchmark of library prep and sequencing using internal references generated by synthetic long-read technology, allowing us to evaluate high-throughput library preparation methods against gold-standard reference genomes derived from the samples themselves.

View Article and Find Full Text PDF

Dysbiosis of the gut microbiome, including elevated abundance of putative leading bacterial triggers such as in inflammatory bowel disease (IBD) patients, is of great interest. To date, most studies in IBD patients are focused on clinical isolates, overlooking their relative abundances and turnover over time. Metagenomics-based studies, on the other hand, are less focused on strain-level investigations.

View Article and Find Full Text PDF

While metagenomics has emerged as a technology of choice for analyzing bacterial populations, the assembly of metagenomic data remains challenging, thus stifling biological discoveries. Moreover, recent studies revealed that complex bacterial populations may be composed from dozens of related strains, thus further amplifying the challenge of metagenomic assembly. metaSPAdes addresses various challenges of metagenomic assembly by capitalizing on computational ideas that proved to be useful in assemblies of single cells and highly polymorphic diploid genomes.

View Article and Find Full Text PDF

The breakpoint graph and the de Bruijn graph are two key data structures in the studies of genome rearrangements and genome assembly. However, the classical breakpoint graphs are defined on two genomes (represented as sequences of synteny blocks), while the classical de Bruijn graphs are defined on a single genome (represented as DNA strings). Thus, the connection between these two graph models is not explicit.

View Article and Find Full Text PDF

Enzyme promiscuity toward substrates has been discussed in evolutionary terms as providing the flexibility to adapt to novel environments. In the present work, we describe an approach toward exploring such enzyme promiscuity in the space of a metabolic network. This approach leverages genome-scale models, which have been widely used for predicting growth phenotypes in various environments or following a genetic perturbation; however, these predictions occasionally fail.

View Article and Find Full Text PDF

Unlabelled: Next-generation sequencing (NGS) technologies have raised a challenging de novo genome assembly problem that is further amplified in recently emerged single-cell sequencing projects. While various NGS assemblers can use information from several libraries of read-pairs, most of them were originally developed for a single library and do not fully benefit from multiple libraries. Moreover, most assemblers assume uniform read coverage, condition that does not hold for single-cell projects where utilization of read-pairs is even more challenging.

View Article and Find Full Text PDF

Recent advances in single-cell genomics provide an alternative to largely gene-centric metagenomics studies, enabling whole-genome sequencing of uncultivated bacteria. However, single-cell assembly projects are challenging due to (i) the highly nonuniform read coverage and (ii) a greatly elevated number of chimeric reads and read pairs. While recently developed single-cell assemblers have addressed the former challenge, methods for assembling highly chimeric reads remain poorly explored.

View Article and Find Full Text PDF
Article Synopsis
  • Acknowledges that biofilms in healthcare settings can harbor pathogens, but our understanding of their microbial diversity is limited due to traditional identification methods.
  • Introduces a new approach using single-cell genome sequencing to overcome these limitations by isolating and analyzing individual bacterial cells from a hospital bathroom sink biofilm.
  • Successfully identifies a nearly complete genome of a new strain of Porphyromonas gingivalis, showcasing the effectiveness of single-cell genomics for studying pathogen diversity in complex environments like hospitals.
View Article and Find Full Text PDF