Publications by authors named "Sergey N Solodukhin"

A hybrid quantum state is a combination of the Hartle-Hawking state for the physical particles and the Boulware state for the nonphysical ones (such as ghosts), as was introduced in our earlier work [Y. Potaux et al., Phys.

View Article and Find Full Text PDF

The entanglement entropy is a fundamental quantity, which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff, which regulates the short-distance correlations. The geometrical nature of entanglement-entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black-hole horizon.

View Article and Find Full Text PDF

A recent proposal by Ryu and Takayanagi for a holographic interpretation of entanglement entropy in conformal field theories dual to supergravity on anti-de Sitter space is generalized to include entanglement entropy of black holes living on the boundary of anti-de Sitter space. The generalized proposal is verified in boundary dimensions d=2 and d=4 for both the uv-divergent and uv-finite terms. In dimension d=4 an expansion of entanglement entropy in terms of size L of the subsystem outside the black hole is considered.

View Article and Find Full Text PDF

We demonstrate that the near-horizon physics, the Hawking radiation, and the reflection off the radial potential barrier can be understood entirely within a conformal field theory picture in terms of one- and two-point functions in the boundary Liouville theory. An important element in this demonstration is the notion of horizon state, the Hawking radiation being interpreted as a result of the transition of horizon state to the ordinary states propagating outside the black hole horizon.

View Article and Find Full Text PDF

We obtain exact expressions for the quasinormal modes of various spin for the Bañados-Teitelboim-Zanelli black hole. These modes determine the relaxation time of black hole perturbations. Exact agreement is found between the quasinormal frequencies and the location of the poles of the retarded correlation function of the corresponding perturbations in the dual conformal field theory.

View Article and Find Full Text PDF