Ventilation in the deep Gulf of Mexico (GoM), its connection to the North Atlantic, and its susceptibility to changes of the Atlantic Meridional Overturning Circulation are investigated by combining observations of radiocarbon and volume transport with a Coupled Model Intercomparison Project phase 6 (CMIP6) General Circulation Model (GCM) ensemble output. Radiocarbon data and multiannual volume transport through the Yucatan Channel suggest deep water residence times ~100 years for the GoM. Comparisons to previous radiocarbon observations suggest that the deep GoM has aged in the recent past, consistent with observed raising temperatures and the CMIP6 GCM simulations.
View Article and Find Full Text PDFThe elucidated structure of asperjinone (1), a natural product isolated from thermophilic Aspergillus terreus, was revised using the expert system Structure Elucidator. The reliability of the revised structure (2) was confirmed using 180 structures containing the (3,3-dimethyloxiran-2-yl)methyl fragment (3) as a basis for comparison and whose chemical shifts contradict the suggested structure (1).
View Article and Find Full Text PDFStructure elucidation using 2D NMR data and application of traditional methods of structure elucidation are known to fail for certain problems. In this work, it is shown that computer-assisted structure elucidation methods are capable of solving such problems. We conclude that it is now impossible to evaluate the capabilities of novel NMR experimental techniques in isolation from expert systems developed for processing fuzzy, incomplete and contradictory information obtained from 2D NMR spectra.
View Article and Find Full Text PDFThe availability of cryogenically cooled probes permits routine acquisition of data from low sensitivity pulse sequences such as inadequate and 1,1-adequate. We demonstrate that the use of cryo-probe generated 1,1-adequate data in conjunction with HMBC dramatically improves computer-assisted structure elucidation (CASE) both in terms of speed and accuracy of structure generation. In this study data were obtained on two dissimilar natural products and subjected to CASE analysis with and without the incorporation of two-bond specific data.
View Article and Find Full Text PDFBackground: This article coincides with the 40 year anniversary of the first published works devoted to the creation of algorithms for computer-aided structure elucidation (CASE). The general principles on which CASE methods are based will be reviewed and the present state of the art in this field will be described using, as an example, the expert system Structure Elucidator.
Results: The developers of CASE systems have been forced to overcome many obstacles hindering the development of a software application capable of drastically reducing the time and effort required to determine the structures of newly isolated organic compounds.
Contemporary Computer-Aided Structure Elucidation (CASE) systems are heavily based on the utilization of 2D NMR spectra. The utilization of HMBC/GHMBC and COSY/GCOSY correlations generally assumes that these correlations result from (2-3)JCH and (2-3)JHH spin-spin couplings, respectively, and consequently these values are used as the default setting in these systems. Our previous studies1,2 have shown that about half of the problems studied actually contain some correlations of 4-6 bonds, so-called "nonstandard" correlations.
View Article and Find Full Text PDFExpert systems for spectroscopic molecular structure elucidation have been developed since the mid-1960s. Algorithms associated with the structure generation process within these systems are deterministic; that is, they are based on graph theory and combinatorial analysis. A series of expert systems utilizing 2D NMR spectra have been described in the literature and are capable of determining the molecular structures of large organic molecules including complex natural products.
View Article and Find Full Text PDFThe elucidation of chemical structures from 2D NMR data commonly utilizes a combination of COSY, HMQC/HSQC, and HMBC data. Generally COSY connectivities are assumed to mostly describe the separation of protons that are separated by 1 skeletal bond (3JHH), while HMBC connectivities represent protons separated from carbon atoms by 1 to 2 skeletal bonds (2JCH and 3JCH). Obviously COSY and HMBC connectivities of lengths greater than those described have been detected.
View Article and Find Full Text PDFThe reaction between an alpha,beta-unsaturated pyruvate and ethyl diazoacetate (EDA) yielded two unexpected products. The structures of these products were determined by automated elucidation of the chemical structures using spectroscopic inputs of a series of 1D and 2D NMR data using the computer program ACD/Structure Elucidator, StrucEluc. The formation of these products is rationalised.
View Article and Find Full Text PDFStrucEluc is an expert system that allows the computer-assisted elucidation of chemical structures based on the inputs of a series of spectral data including 1D and 2D NMR and mass spectra. The system has been enabled to allow a chemist to utilize fragments stored in a fragment database as well as user-defined fragments submitted by the chemist in the structure elucidation process. The association of fragments in this way has been shown to dramatically speed up the process of structure generation from 2D NMR data and has helped to minimize or eliminate the need for user intervention thereby further enabling the vision of automated elucidation.
View Article and Find Full Text PDFDescribed herein are applications of the latest version of the StrucEluc expert software system, enhanced to use 2D NMR data, to the structure elucidation of 60 recently isolated natural products. In this study, selected molecules containing between 15 and 65 skeletal atoms and having molecular masses ranging from 200 to 900 amu have been investigated. The correct structure was determined unambiguously for 58 of these molecules.
View Article and Find Full Text PDF