Publications by authors named "Sergey Mikhalovsky"

The use of enterosorbents-materials which can be administered orally and eliminate toxic substances from the gastrointestinal tract (GIT) by sorption-offers an attractive complementary protection of humans against acute and chronic poisoning. In this study, we report the results of developing a microgranulated binary biomedical preparation for oral use. It was designed with a core-shell structure based on pectin with low degree of esterification as the core, and nanoporous activated carbon produced from rice husk, AC-RH, as the shell, designated as AC-RH@pectin.

View Article and Find Full Text PDF

The effectiveness of an amphoteric cryogel (AAC) as an oral sorbent (enerosorbent) for the treatment of acute poisoning of small animals (rats) with heavy metals (HMs) was studied in in vivo experiments. The morphological structure of the cryogel was examined using scanning electron microscopy/energy-dispersive X-ray analysis and confocal microscopy. The use of the cryogel in the treatment of rats administered an LD dose of Cd(NO), CsNO, Sr(NO), or HgCl in aqueous solution showed their high survival rate compared to the control group, which did not receive such treatment.

View Article and Find Full Text PDF

Strategies involving the inclusion of cell-instructive chemical and topographical cues to smart biomaterials in combination with a suitable physical stimulus may be beneficial to enhance nerve-regeneration rate. In this regard, we investigated the surface functionalization of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV)-based electroconductive electrospun nanofibers coupled with externally applied electrical stimulus for accelerated neuronal growth potential. In addition, the voltage-dependent conductive mechanism of the nanofibers was studied in depth to interlink intrinsic conductive properties with electrically stimulated neuronal expressions.

View Article and Find Full Text PDF

Nitric oxide NO, mediates inflammatory and thrombotic processes and designing biomaterials capable of releasing NO in contact with biological tissues is considered to be a major factor aimed at improving their bio- and haemocompatibility and antibacterial properties. Their NO-releasing capacity however is limited by the amount of the NO-containing substance incorporated in the bulk or immobilised on the surface of a biomaterial. An alternative approach is based on the design of a material generating nitric oxide from endogenous NO bearing metabolites by their catalytic decomposition.

View Article and Find Full Text PDF

Microbe-based decontamination of phenol-polluted environments has significant advantages over physical and chemical approaches by being relatively cheaper and ensuring complete phenol degradation. There is a need to search for commercially prospective bacterial strains that are resistant to phenol and other co-pollutants, e.g.

View Article and Find Full Text PDF

Macroporous scaffolds composed of chitosan (CHI), hydroxyapatite (HA), heparin (Hep), and polyvinyl alcohol (PVA) were prepared with a glutaraldehyde (GA) cross-linker by cryogelation. Addition of PVA to the reaction mixture slowed down the formation of a polyelectrolyte complex (PEC) between CHI and Hep, which allowed more thorough mixing, and resulted in the development of the homogeneous matrix structure. Freezing of the CHI-HA-GA and PVA-Hep-GA mixture led to the formation of a non-stoichiometric PEC between oppositely charged groups of CHI and Hep, which caused further efficient immobilization of bone morphogenic protein 2 (BMP-2) possible due to electrostatic interactions.

View Article and Find Full Text PDF

Novel macroporous iron oxide nanocomposite cryogels were synthesized and assessed as arsenite (As(III)) adsorbents. The two-step synthesis method, by which a porous nanonetwork of iron oxide is firstly formed, allowed a homogeneous dispersion of the iron oxide in the cryogel reaction mixture, regardless of the nature of the co-polymer forming the cryogel structure. The cryogels showed excellent mechanical properties, especially the acrylamide-based cryogel.

View Article and Find Full Text PDF

Oral intestinal adsorbents (enterosorbents) are orally administered materials which pass through the gut where they bind (adsorb) various substances. The enterosorbent Enterosgel (Polymethylsiloxane polyhdrate) is recommended as a symptomatic treatment for acute diarrhoea and chronic diarrhoea associated with irritable bowel syndrome (IBS). Since 1980's there have been many Enterosgel clinical trials, however, the detailed mechanism of Enterosgel action towards specific toxins and interaction with concomitantly administered medications has not been fully investigated.

View Article and Find Full Text PDF

The correlation between shape and concentration of silver nanoparticles (AgNPs), their cytotoxicity and formation of reactive oxygen species (ROS) in the presence of electromagnetic fields (EMFs) has been investigated. In addition, the bio-effects caused by the combination of EMFs and graphene nanoparticles (GrNPs) have been also assessed. The AgNPs of three shapes (triangular, spherical and colloidal) and GrNPs were added in high concentrations to the culture of human fibroblasts and exposed to EMF of three different frequencies: 900, 2400 and 7500 MHz.

View Article and Find Full Text PDF

The wearable artificial kidney can deliver continuous ambulatory dialysis for more than 3 million patients with end-stage renal disease. However, the efficient removal of urea is a key challenge in miniaturizing the device and making it light and small enough for practical use. Here, we show that two-dimensional titanium carbide (MXene) with the composition of TiCT , where T represents surface termination groups such as -OH, -O-, and -F, can adsorb urea, reaching 99% removal efficiency from aqueous solution and 94% from dialysate at the initial urea concentration of 30 mg/dL, with the maximum urea adsorption capacity of 10.

View Article and Find Full Text PDF

In the present study, a conducting polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) along with a biodegradable polymer poly(ε-caprolactone) (PCL) was used to prepare an electrically conductive, biocompatible, bioactive, and biodegradable nanofibrous scaffold for possible use in neural tissue engineering applications. Core-sheath electrospun nanofibers of PCL as the core and MEH-PPV as the sheath, were surface-functionalized with (3-aminopropyl) triethoxysilane (APTES) and 1,6-hexanediamine to obtain amine-functionalized surface to facilitate cell-biomaterial interactions with the aim of replacing the costly biomolecules such as collagen, fibronectin, laminin, and arginyl-glycyl-aspartic acid (RGD) peptide for surface modification. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed the formation of core-sheath morphology of the electrospun nanofibers, whereas Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) revealed successful incorporation of amine functionality after surface functionalization.

View Article and Find Full Text PDF

There is a range of medical conditions, which include acute organ failure, bacterial and viral infection, and sepsis, that result in overactivation of the inflammatory response of the organism and release of proinflammatory cytokines into the bloodstream. Fast removal of these cytokines from blood circulation could offer a potentially efficient treatment of such conditions. This study aims at the development and assessment of novel biocompatible graphene-based adsorbents for blood purification from proinflammatory cytokines.

View Article and Find Full Text PDF

The purpose of this study was to prepare an electrically conducting poly[2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) based nanofibrous scaffold and to investigate the synergetic effect of nanofibre structure and electrical stimulation on neuronal growth for possible use in nerve repair. Nanofibres were produced by electrospinning of blended MEH-PPV with polycaprolactone (PCL) at a ratio of 20 : 80, 40 : 60, 50 : 50 and 60 : 40 (v/v). A better electrical conductivity was achieved by using core-sheath structured nanofibres of PCL (core) and MEH-PPV (sheath) produced using the coaxial electrospinning technique.

View Article and Find Full Text PDF

Whilst various remedial human monoclonal antibodies have been developed to treat the potentially life-threatening systemic complications associated with anthrax infection, an optimal and universally effective administration route has yet to be established. In the later stages of infection when antibody administration by injection is more likely to fail one possible route to improve outcome is via the use of an antibody-bound, adsorbent haemoperfusion device. We report here the development of an adsorbent macroporous polymer column containing immobilised B.

View Article and Find Full Text PDF

Development of porous carbons with high specific surface area (>1200mg) targeted at nitrate removal from aqueous solutions is investigated by chemical activation of carbonized rice husk. Potassium carbonate is used as activating and desilicating agent. The effect of post-synthetic treatment by gas phase ammoxidation with ozone/ammonia or oxidation with concentrated nitric acid followed by nitrification with urea on main physicochemical properties and on the effectiveness of the activated carbons in nitrate removal is compared with those determined for a pristine activated carbonized rice husk sample.

View Article and Find Full Text PDF

In this review, the importance of water in hydrogel (HG) properties and structure is analyzed. A variety of methods such as ¹H NMR (nuclear magnetic resonance), DSC (differential scanning calorimetry), XRD (X-ray powder diffraction), dielectric relaxation spectroscopy, thermally stimulated depolarization current, quasi-elastic neutron scattering, rheometry, diffusion, adsorption, infrared spectroscopy are used to study water in HG. The state of HG water is rather non-uniform.

View Article and Find Full Text PDF

The development of liposome-nanoparticle colloid systems offers a versatile approach towards the manufacture of multifunctional therapeutic platforms. A strategy to encapsulate small metallic nanoparticles (<4nm) within multilamellar vesicles, effected by exploiting electrostatic interactions was investigated. Two liposome-gold nanoparticle (lipo-GNP) systems were prepared by the reverse-phase evaporation method employing cationic or anionic surface functionalised particles in combination with oppositely charged lipid compositions with subsequent post-formulation PEGylation.

View Article and Find Full Text PDF

Nanoporous adsorbents are promising materials to augment the efficacy of haemodialysis for the treatment of end stage renal disease where mortality rates remain unacceptably high despite improvements in membrane technology. Complications are linked in part to inefficient removal of protein bound and high molecular weight uraemic toxins including key marker molecules albumin bound indoxyl sulphate (IS) and p-cresyl sulphate (PCS) and large inflammatory cytokines such as IL-6. The following study describes the assessment of a nanoporous activated carbon monolith produced using a novel binder synthesis route for scale up as an in line device to augment haemodialysis through adsorption of these toxins.

View Article and Find Full Text PDF

The process of wound healing is often accompanied by bacterial infection or critical colonization, resulting in protracted inflammation, delayed reepithelization, and production of pungent odors. The malodor produced by these wounds may lower health-related quality of life and produce psychological discomfort and social isolation. Current management focuses on reducing bacterial activity within the wound site and absorbing malodorous gases.

View Article and Find Full Text PDF

Effective technologies are required to remove organic micropollutants from large fluid volumes to overcome present and future challenges in water and effluent treatment. A novel hierarchical composite filter material for rapid and effective removal of polar organic contaminants from water was developed. The composite is fabricated from phenolic resin-derived carbon microbeads with controllable porous structure and specific surface area embedded in a monolithic, flow permeable, poly(vinyl alcohol) cryogel.

View Article and Find Full Text PDF

Effective therapy lies in achieving a therapeutic amount of drug to the proper site in the body and then maintaining the desired drug concentration for a sufficient time interval to be clinically effective for treatment. The blood-brain barrier (BBB) hinders most drugs from entering the central nervous system (CNS) from the blood stream, leading to the difficulty of delivering drugs to the brain via the circulatory system for the treatment, diagnosis and prevention of brain diseases. Several brain drug delivery approaches have been developed, such as intracerebral and intracerebroventricular administration, intranasal delivery and blood-to-brain delivery, as a result of transient BBB disruption induced by biological, chemical or physical stimuli such as zonula occludens toxin, mannitol, magnetic heating and ultrasound, but these approaches showed disadvantages of being dangerous, high cost and unsuitability for most brain diseases and drugs.

View Article and Find Full Text PDF

Peripheral nerve injury continues to be a major global health problem that can result in debilitating neurological deficits and neuropathic pain. Current state-of-the-art treatment involves reforming the damaged nerve pathway using a nerve autograft. Engineered nerve repair conduits can provide an alternative to the nerve autograft avoiding the inevitable tissue damage caused at the graft donor site.

View Article and Find Full Text PDF

The development of bulk, three-dimensional (3D), macroporous polymers with high permeability, large surface area and large volume is highly desirable for a range of applications in the biomedical, biotechnological and environmental areas. The experimental techniques currently used are limited to the production of small size and volume cryogel material. In this work we propose a novel, versatile, simple and reproducible method for the synthesis of large volume porous polymer hydrogels by cryogelation.

View Article and Find Full Text PDF

A new biomimetic material for artificial blood vessel with in situ catalytic generation of nitric oxide (NO) was prepared in this study. Organoselenium immobilized polyethyleneimine as NO donor catalyst and sodium alginate were alternately loaded onto the surface of electrospun polycaprolactone matrix via electrostatic layer-by-layer self-assembly. This material revealed significant NO generation when contacting NO donor S-nitrosoglutathione (GSNO).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionhbocks514unfkklvomtenivkv7aj9egm): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once