Publications by authors named "Sergey Melnik"

In binary cascade dynamics, the nodes of a graph are in one of two possible states (inactive, active), and nodes in the inactive state make an irreversible transition to the active state, as soon as their precursors satisfy a predetermined condition. We introduce a set of recursive equations to compute the probability of reaching any final state, given an initial state, and a specification of the transition probability function of each node. Because the naive recursive approach for solving these equations takes factorial time in the number of nodes, we also introduce an accelerated algorithm, built around a breath-first search procedure.

View Article and Find Full Text PDF

We introduce a probabilistic framework that represents stylized banking networks with the aim of predicting the size of contagion events. Most previous work on random financial networks assumes independent connections between banks, whereas our framework explicitly allows for (dis)assortative edge probabilities (i.e.

View Article and Find Full Text PDF

Continuous-time Markov process models of contagions are widely studied, not least because of their utility in predicting the evolution of real-world contagions and in formulating control measures. It is often the case, however, that discrete-time approaches are employed to analyze such models or to simulate them numerically. In such cases, time is discretized into uniform steps and transition rates between states are replaced by transition probabilities.

View Article and Find Full Text PDF

It is commonly assumed in percolation theories that at most one percolating cluster can exist in a network. We show that several coexisting percolating clusters (CPCs) can emerge in networks due to limited mixing, i.e.

View Article and Find Full Text PDF

We introduce network L-cloning, a technique for creating ensembles of random networks from any given real-world or artificial network. Each member of the ensemble is an L-cloned network constructed from L copies of the original network. The degree distribution of an L-cloned network and, more importantly, the degree-degree correlation between and beyond nearest neighbors are identical to those of the original network.

View Article and Find Full Text PDF

We develop a new ensemble of modular random graphs in which degree-degree correlations can be different in each module, and the inter-module connections are defined by the joint degree-degree distribution of nodes for each pair of modules. We present an analytical approach that allows one to analyze several types of binary dynamics operating on such networks, and we illustrate our approach using bond percolation, site percolation, and the Watts threshold model. The new network ensemble generalizes existing models (e.

View Article and Find Full Text PDF

The spread of ideas across a social network can be studied using complex contagion models, in which agents are activated by contact with multiple activated neighbors. The investigation of complex contagions can provide crucial insights into social influence and behavior-adoption cascades on networks. In this paper, we introduce a model of a multi-stage complex contagion on networks.

View Article and Find Full Text PDF

Mean-field analysis is an important tool for understanding dynamics on complex networks. However, surprisingly little attention has been paid to the question of whether mean-field predictions are accurate, and this is particularly true for real-world networks with clustering and modular structure. In this paper, we compare mean-field predictions to numerical simulation results for dynamical processes running on 21 real-world networks and demonstrate that the accuracy of such theory depends not only on the mean degree of the networks but also on the mean first-neighbor degree.

View Article and Find Full Text PDF

We present an analytical approach to determining the expected cascade size in a broad range of dynamical models on the class of random networks with arbitrary degree distribution and nonzero clustering introduced previously in [M. E. J.

View Article and Find Full Text PDF

We demonstrate that a tree-based theory for various dynamical processes operating on static, undirected networks yields extremely accurate results for several networks with high levels of clustering. We find that such a theory works well as long as the mean intervertex distance ℓ is sufficiently small--that is, as long as it is close to the value of ℓ in a random network with negligible clustering and the same degree-degree correlations. We support this hypothesis numerically using both real-world networks from various domains and several classes of synthetic clustered networks.

View Article and Find Full Text PDF

The question of how clustering (nonzero density of triangles) in networks affects their bond percolation threshold has important applications in a variety of disciplines. Recent advances in modeling highly clustered networks are employed here to analytically study the bond percolation threshold. In comparison to the threshold in an unclustered network with the same degree distribution and correlation structure, the presence of triangles in these model networks is shown to lead to a larger bond percolation threshold (i.

View Article and Find Full Text PDF

An analytical approach to calculating bond percolation thresholds, sizes of k-cores, and sizes of giant connected components on structured random networks with nonzero clustering is presented. The networks are generated using a generalization of Trapman's [P. Trapman, Theor.

View Article and Find Full Text PDF

We show that the various techniques commonly used to measure the linewidth enhancement factor can lead to different values when applied to quantum dot semiconductor lasers. Such behaviour is a direct consequence of the intrinsic capture/escape dynamics of quantum dot materials and of the free carrier plasma effects. This provides an explanation for the wide range of values experimentally measured and the linewidth re-broadening recently measured.

View Article and Find Full Text PDF