NAR Genom Bioinform
December 2024
Eukaryotic cells express a large number of transcripts from a single gene due to alternative splicing. Despite hundreds of thousands of splice isoforms being annotated in databases, it has been reported that the current exon catalogs remain incomplete. At the same time, introns of human protein-coding (PC) genes contain a large number of evolutionarily conserved elements with unknown function.
View Article and Find Full Text PDFThe mammalian and genes encode structurally related proteins from the bromodomain and extraterminal domain protein family. The expression of is regulated by unproductive splicing upon inclusion of exon 3b, which is located in the region encoding a bromodomain. Bioinformatic analysis indicated that exon 3b inclusion is controlled by a pair of conserved complementary regions (PCCR) located in the flanking introns.
View Article and Find Full Text PDFRNA structure has been increasingly recognized as a critical player in the biogenesis and turnover of many transcripts classes. In eukaryotes, the prediction of RNA structure by thermodynamic modeling meets fundamental limitations due to the large sizes and complex, discontinuous organization of eukaryotic genes. Signatures of functional RNA structures can be found by detecting compensatory substitutions in homologous sequences, but a comparative approach is applicable only within conserved sequence blocks.
View Article and Find Full Text PDFOver recent years, long-range RNA structure has emerged as a factor that is fundamental to alternative splicing regulation. An increasing number of human disorders are now being associated with splicing defects; hence it is essential to develop methods that assess long-range RNA structure experimentally. RNA in situ conformation sequencing (RIC-seq) is a method that recapitulates RNA structure within physiological RNA-protein complexes.
View Article and Find Full Text PDFAlternative splicing (AS) and alternative polyadenylation (APA) are two crucial steps in the post-transcriptional regulation of eukaryotic gene expression. Protocols capturing and sequencing RNA 3'-ends have uncovered widespread intronic polyadenylation (IPA) in normal and disease conditions, where it is currently attributed to stochastic variations in the pre-mRNA processing. Here, we took advantage of the massive amount of RNA-seq data generated by the Genotype Tissue Expression project (GTEx) to simultaneously identify and match tissue-specific expression of intronic polyadenylation sites with tissue-specific splicing.
View Article and Find Full Text PDFEukaryotic gene expression is regulated post-transcriptionally by a mechanism called unproductive splicing, in which mRNA is triggered to degrade by the nonsense-mediated decay (NMD) pathway as a result of regulated alternative splicing (AS). Only a few dozen unproductive splicing events (USEs) are currently documented, and many more remain to be identified. Here, we analyzed RNA-seq experiments from the Genotype-Tissue Expression (GTEx) Consortium to identify USEs, in which an increase in the NMD isoform splicing rate is accompanied by tissue-specific down-regulation of the host gene.
View Article and Find Full Text PDF