In the present paper we discuss correlations between crystal structure and magnetic properties of epitaxial ε-FeO films grown on GaN. The large magnetocrystalline anisotropy and room temperature multiferroic properties of this exotic iron oxide polymorph, make it a perspective material for the development of low power consumption magnetic media storage devices. Extending our recent progress in PLD growth of ε-FeO on the surface of technologically important nitride semiconductors, we apply reciprocal space tomography by electron and x-ray diffraction to investigate the break of crystallographic symmetry occurring at the oxide-nitride interface resulting in the appearance of anisotropic crystallographic disorder in the sub-100 nm ε-FeO films.
View Article and Find Full Text PDFThin (4-20 nm) yttrium iron garnet (YFeO, YIG) layers have been grown on gadolinium gallium garnet (GdGaO, GGG) 111-oriented substrates by laser molecular beam epitaxy in 700-1000 °C growth temperature range. The layers were found to have atomically flat step-and-terrace surface morphology with step height of 1.8 Å characteristic for YIG(111) surface.
View Article and Find Full Text PDFSurface X-ray diffraction was applied to study structure of the fluorite-silicon interface forming upon epitaxial growth of CaF2 on Si(001) surface kept at 750 degrees C. Samples with CaF2 coverage of 1.5-4 (110)-monolayers were grown and in-situ characterized using synchrotron radiation.
View Article and Find Full Text PDF