Reported for the first time is picosecond-range pulse generation in an all-fibre Raman laser based on P₂O₅-doped silica fibre. Employment of phosphor-silicate fibre made possible single-cascade spectral transformation of pumping pulses at 1084 nm into 270-ps long Raman laser pulses at 1270 nm. The highest observed fraction of the Stokes component radiation at 1270 nm in the total output of the Raman laser amounted to 30%.
View Article and Find Full Text PDFThis work presents, for the first time, the results of studies of stimulated Raman scattering (SRS) in 1.2-km P2O5-doped silica fiber of radiation of single- and double-scale picosecond pulses generated in a fiber master oscillator and amplified in a one-stage fiber amplifier. Shown are differences in supercontinuum spectra composed of several Stokes components when pumped with pulses of different structure.
View Article and Find Full Text PDFFor the first time we report the results of both numerical simulation and experimental observation of second-harmonic generation as an example of non-linear frequency conversion of pulses generated by passively mode-locked fiber master oscillator in different regimes including conventional (stable) and double-scale (partially coherent and noise-like) ones. We show that non-linear frequency conversion efficiency of double-scale pulses is slightly higher than that of conventional picosecond laser pulses with the same energy and duration despite strong phase fluctuations of double-scale pulses.
View Article and Find Full Text PDFThe present work demonstrates a fibre-laser system with automatic electronic-controlled triggering of dissipative soliton generation mode. Passive mode locking based on the effect of non-linear polarisation evolution has been achieved through a polarisation controller containing a single low-voltage liquid crystal plate whose optimal wave delay was determined from analysis of inter-mode beat spectrum of the output radiation.
View Article and Find Full Text PDFWe show experimentally and numerically new transient lasing regime between stable single-pulse generation and noise-like generation. We characterize qualitatively all three regimes of single pulse generation per round-trip of all-normal-dispersion fiber lasers mode-locked due to effect of nonlinear polarization evolution. We study spectral and temporal features of pulses produced in all three regimes as well as compressibility of such pulses.
View Article and Find Full Text PDFWe observed generation of stable picoseconds pulse train and double-scale optical lumps with picosecond envelope and femtosecond noise-like oscillations in the same Yb-doped fiber laser with all-positive-dispersion cavity mode-locked due to the effect of non-linear polarization evolution. In the noise-like pulse generation regime the auto-correlation function has a non-usual double (femto- and picosecond) scale shape. We discuss mechanisms of laser switching between two operation regimes and demonstrate a good qualitative agreement between experimental results and numerical modeling based on modified nonlinear Schrödinger equations.
View Article and Find Full Text PDFThis paper reports on the results of research into passively modelocked fiber laser with a record-setting optical length of the resonant cavity amounting to 3.8 km. Significant elongation of the laser resonator led to more than two orders of magnitude increase in the output pulse energy at the same pump radiation power.
View Article and Find Full Text PDF