Publications by authors named "Sergey Krylov"

Maintaining stringent conditions in SELEX (Systematic Evolution of Ligands by EXponential enrichment) is crucial for obtaining high-affinity aptamers. However, excessive stringency greatly increases the risk of SELEX failure. Controlling stringency has remained a technical challenge, largely dependent on intuition, due to the absence of a clear, quantitative measure of stringency.

View Article and Find Full Text PDF

Rapid, point-of-care tests are critical for early diagnosis of disease and detection of biological threats. Lateral flow immunoassays (LFIAs) are well-suited for point-of-care testing due to their ease of use and straightforward readout. However, limitations in sensitivity, quantification, and integration into sample-to-result systems indicate the need for further advancements.

View Article and Find Full Text PDF

The equilibrium dissociation constant () is a major characteristic of affinity complexes and one of the most frequently determined physicochemical parameters. Despite its significance, the values of obtained for the same complex under similar conditions often exhibit considerable discrepancies and sometimes vary by orders of magnitude. These inconsistencies highlight the susceptibility of determination to large systematic errors, even when random errors are small.

View Article and Find Full Text PDF

Heat shock protein 90 (HSP90) is a critical target for anticancer and anti-fungal-infection therapies due to its central role as a molecular chaperone involved in protein folding and activation. In this study, we developed Förster Resonance Energy Transfer (FRET) assays to characterize the binding of HSP90 to its co-chaperone Sba1, as well as that of the homologous HSP90α to p23. The assay for HSP90α binding to p23 enables selectivity assessment for compounds aimed to inhibit the binding of HSP90 to Sba1 without affecting the physiological activity of HSP90α.

View Article and Find Full Text PDF

Nonsteady-state behaviors are not expected in electric circuits that lack significant capacitance, inductivity, and/or active feedback. Here, we report that electrophoresis on paper─used, e.g.

View Article and Find Full Text PDF

Allylbenzenes (apiol, dillapiol, myristicin and allyltetramethoxybenzene) are individual components of plant essential oils that demonstrate antitumor activity and can enhance the antitumor activity of cytotoxic drugs, such as paclitaxel, doxorubicin, cisplatin, etc. Triphenylphosphine (PPh) derivatives of allylbenzenes are two to three orders of magnitude more potent than original allylbenzenes in terms of IC. The inhibition of efflux pumps has been reported for allylbenzenes, and the PPh moiety is deemed to be responsible for preferential mitochondrial accumulation and the depolarization of mitochondrial membranes.

View Article and Find Full Text PDF
Article Synopsis
  • The equilibrium constant is a vital parameter in chemistry, particularly for binding reactions that create affinity complexes (like protein interactions).
  • Many current methods for measuring these constants may lead to inaccuracies, especially for very stable complexes, but the reasons behind these inaccuracies aren't well understood.
  • This study highlights the significant role that the concentration of the interacting components plays in determining the accuracy of equilibrium constants and offers guidance for improving measurements across different experimental methods.
View Article and Find Full Text PDF

A promising method for improving the functional properties of calcium-phosphate coatings is the incorporation of various antibacterial additives into their structure. The microbial contamination of a superficial wound is inevitable, even if the rules of asepsis and antisepsis are optimally applied. One of the main problems is that bacteria often become resistant to antibiotics over time.

View Article and Find Full Text PDF

The drug resistance of pathogenic bacteria is often due efflux pumps-specific proteins that remove foreign compounds from bacterial cells. To overcome drug resistance, adjuvants are often used that can inhibit efflux pumps or other systems that ensure the resistance of bacteria to the action of antibiotics. We assumed that a new level of effectiveness with the use of an antibiotic + an adjuvant pair could be achieved by their joint delivery into the pathogen.

View Article and Find Full Text PDF

Intrinsically disordered proteins (IDPs), which can interact with many partner proteins, are central to many physiological functions and to various pathologies that include neurodegeneration. Here, we introduce the Sherpa hypothesis, according to which a subset of stable IDPs that we term Phenotype-Preserving Disordered Proteins (PPDP) play a central role in protecting cell phenotypes from perturbations. To illustrate and test this hypothesis, we computer-simulate some salient features of how cells evolve and differentiate in the presence of either a single PPDP or two incompatible PPDPs.

View Article and Find Full Text PDF

Cytometry of Reaction Rate Constant (CRRC) is a method for studying cell-population heterogeneity using time-lapse fluorescence microscopy, which allows one to follow reaction kinetics in individual cells. The current and only CRRC workflow utilizes a single fluorescence image to manually identify cell contours which are then used to determine fluorescence intensity of individual cells in the entire time-stack of images. This workflow is only reliable if cells maintain their positions during the time-lapse measurements.

View Article and Find Full Text PDF

Combretastatin derivatives is a promising class of antitumor agents, tubulin assembly inhibitors. However, due to poor solubility and insufficient selectivity to tumor cells, we believe, their therapeutic potential has not been fully realized yet. This paper describes polymeric micelles based on chitosan (a polycation that causes pH and thermosensitivity of micelles) and fatty acids (stearic, lipoic, oleic and mercaptoundecanoic), which were used as a carrier for a range of combretastatin derivatives and reference organic compounds, demonstrating otherwise impossible delivery to tumor cells, at the same time substantially reduced penetration into normal cells.

View Article and Find Full Text PDF

Inhibition of biosynthetic pathways of compounds essential for Trypanosoma cruzi is considered as one of the possible action mechanisms of drugs against Chagas disease. Here, we investigated the inhibition of galactonolactone oxidase from T. cruzi (TcGAL), which catalyzes the final step in the synthesis of vitamin C, an antioxidant that T.

View Article and Find Full Text PDF

Serological assays detect the presence of specific antibodies in blood. There are urgent and important applications for serological point-of-care (POC) assays. However, available detection methods are either insufficiently sensitive or too complex for POC settings.

View Article and Find Full Text PDF

The determination of accurate equilibrium dissociation constants, , of protein-small molecule complexes is important but challenging as all established methods have inherent sources of inaccuracy. Accurate Constant via Transient Incomplete Separation (ACTIS) is a new method for determination using transient incomplete separation of the complex from the unbound small molecule in a pressure-driven flow inside a capillary. ACTIS is accurate, and its accuracy is invariant to variations in geometries of both the fluidic system and the flow.

View Article and Find Full Text PDF

Lateral flow immunoassay (LFIA) is a rapid, simple, and inexpensive point-of-need method. A major limitation of LFIA is a high limit of detection (LOD), which impacts its diagnostic sensitivity. To overcome this limitation, we introduce a signal-enhancement procedure that is performed after completing LFIA and involves controllably moving biotin- and streptavidin-functionalized gold nanoparticles by electrophoresis.

View Article and Find Full Text PDF

Selection of oligonucleotide aptamers involves consecutive rounds of affinity isolation of target-binding oligonucleotides from a random-sequence oligonucleotide library. Every next round produces an aptamer-enriched library with progressively higher fitness for tight binding to the target. The progress of enrichment can only be accurately assessed with bulk affinity assays in which a library is mixed with the target and one of two quantitative parameters, the fraction of the unbound library () or the equilibrium dissociation constant (), is determined.

View Article and Find Full Text PDF

Large molecules can be generically separated from small ones, though partially and temporarily, in a pressure-driven flow inside a capillary. This transient incomplete separation has been only applied to species with diffusion coefficients different by at least an order of magnitude. Here, we demonstrate, for the first time, the analytical utility of transient incomplete separation for species with close diffusion coefficients.

View Article and Find Full Text PDF

Allylpolyalkoxybenzenes (APABs) and terpenoids from plant essential oils exhibit a range of remarkable biological effects, including analgesic, antibacterial, anti-inflammatory, antioxidant, and others. Synergistic activity with antibiotics of different classes has been reported, with inhibition of P-glycoprotein and impairment of bacterial cell membrane claimed as probable mechanisms. Clearly, a more detailed understanding of APABs' biological activity could help in the development of improved therapeutic options for a range of diseases.

View Article and Find Full Text PDF

Molecular stream separation (MSS) is a promising complement for continuous-flow synthesis. MSS is driven by forces exerted on molecules by a field applied at an angle to the stream-carrying flow. MSS has only been performed with a 90° field-to-flow angle because of a rectangular geometry of canonic MSS; the second-order rotational symmetry of a rectangle prevents any other angle.

View Article and Find Full Text PDF

Partitioning of protein-DNA complexes from protein-unbound DNA is a key step in selection of DNA aptamers. Conceptually, the partitioning step is characterized by two parameters: transmittance for protein-bound DNA (binders) and transmittance for unbound DNA (nonbinders). Here, we present the first study to reveal how these transmittances depend on experimental conditions; such studies are pivotal to the effective planning and control of selection.

View Article and Find Full Text PDF

Accurate Constant via Transient Incomplete Separation (ACTIS) is a new method for finding the equilibrium dissociation constant of a protein-small molecule complex based on transient incomplete separation of the complex from the unbound small molecule in a capillary. This separation is caused by differential transverse diffusion of the complex and the small molecule in a pressure-driven flow. The advection-diffusion processes underlying ACTIS can be described by a system of partial differential equations allowing for a virtual ACTIS instrument to be built and ACTIS to be studied in silico.

View Article and Find Full Text PDF

A primary reason for chemotherapy failure is chemoresistance, which is driven by various mechanisms. Multi-drug resistance (MDR) is one such mechanism that is responsible for drug extrusion from the intracellular space. MDR can be intrinsic and thus, may pre-exist the first application of chemotherapy.

View Article and Find Full Text PDF

In molecular-stream separation (MSS), a stream of a multicomponent mixture is separated into multiple streams of individual components. Quantitative evaluation of MSS data has been a bottleneck in MSS for decades as there was no conventional way to present the data in a reproducible and uniform fashion. The roots of the problem were in the multidimensional nature of MSS data; even in the ideal case of steady-state separation, the data is three-dimensional: intensity and two spatial coordinates.

View Article and Find Full Text PDF