A new efficient method was proposed for the synthesis of (18-crown-6)stilbene; the structure of the product was confirmed by X-ray diffraction analysis. In MeCN, this compound forms pseudodimeric complexes with -(2-ammonioethyl)-4-styrylpyridinium and -(3-ammoniopropyl)-4-styrylpyridinium diperchlorates via hydrogen bonding between the ammonium group and the crown ether oxygen atoms. The ammonioethyl derivative was synthesized for the first time.
View Article and Find Full Text PDFThe effects of solvent and crown-ether moiety on spectral properties of pyridinium styryl dye were studied by steady-state absorption and fluorescent spectroscopy. Analysis of viscosity and polarity effects on fluorescence quantum yield and Stokes shift permitted us to suggest that there is a two stage process of excited state relaxation. The macrocyclic moiety has a little influence on the first stage of relaxation, which manifests itself in a magnitude of Stokes shift, but suppresses considerably the second stage, which manifests itself in a magnitude of fluorescence quantum yield.
View Article and Find Full Text PDFNovel 2-benzothiazole-, 4-pyridine-, and 2- and 4-quinoline-based styryl dyes containing an N-methylbenzoaza-15(18)-crown-5(6)-ether moiety were synthesized. A detailed electronic spectroscopy study revealed high performance of these compounds as optical molecular sensors for alkali and alkaline-earth metal cations. They were shown to considerably surpass analogous chromoionophores based on N-phenylaza-crown ethers regarding both the ionochromism and the cation-binding ability.
View Article and Find Full Text PDF