Sb is a three-dimensional Peierls insulator. The Peierls instability gives rise to doubling of the translational period along the [111] direction and alternating van der Waals and covalent bonding between (111) atomic planes. At the (111) surface of Sb, the Peierls condition is violated, which in theory can give rise to properties differing from the bulk.
View Article and Find Full Text PDFThe strongly correlated electron material, vanadium dioxide (VO2), has seen considerable attention and research application in metal-oxide electronics due to its metal-to-insulator transition close to room temperature. Vacuum annealing a V2O5(010) single crystal results in Wadsley phases (VnO2n+1, n > 1) and VO2. The resistance changes by a factor of 20 at 342 K, corresponding to the metal-to-insulator phase transition of VO2.
View Article and Find Full Text PDFWe report on structural and electronic properties of superconducting nanohybrids made of Pb grown in the ultrahigh vacuum on the atomically clean surface of single crystals of topological BiTe. In situ scanning tunneling microscopy and spectroscopy demonstrated that the resulting network is composed of Pb-nanoislands dispersed on the surface and linked together by an amorphous atomic layer of Pb, which wets BiTe. As a result, the superconducting state of the system is characterized by a thickness-dependent superconducting gap of Pb-islands and by a very unusual position-independent proximity gap between them.
View Article and Find Full Text PDFBecause of their unique atomic structure, 2 materials are able to create an up-to-date paradigm in fundamental science and technology on the way to engineering the band structure and electronic properties of materials on the nanoscale. One of the simplest methods along this path is the superposition of several 2 nanomaterials while simultaneously specifying the twist angle between adjacent layers (θ), which leads to the emergence of Moiré superlattices. The key challenge in 2 nanoelectronics is to obtain a nanomaterial with numerous Moiré superlattices in addition to a high carrier mobility in a stable and easy-to-fabricate material.
View Article and Find Full Text PDFFracturing microscale constrictions in metallic wires, such as tungsten, platinum, or platinum-iridium, is a common fabrication method used to produce atomically sharp tips for scanning tunneling microscopy (STM), field-emission microscopy and field ion microscopy. Typically, a commercial polycrystalline drawn wire is locally thinned and then fractured by means of a dislocation slip inside the constriction. We examine a special case where a dislocation-free microscale constriction is created and fractured in a single crystal tungsten rod with a long side parallel to the [100] direction.
View Article and Find Full Text PDFNbO terminated Nb(110) and its oxidation are examined by scanning tunneling microscopy and spectroscopy (STS). The oxide structures are strongly influenced by the structural and electronic properties of the underlying NbO substrate. The NbO is terminated by one-dimensional few-nanometer nanocrystals, which form an ordered pattern.
View Article and Find Full Text PDFWe report on a transition in a monolayer of C molecules deposited on a WO/W(110) substrate. The transition from a static state, where the molecules are rigidly bound to the surface by a coordination bond, to a state where the molecules are loosely bound to the surface by van der Waals force and rotate continuously, has been studied using scanning tunnelling microscopy (STM). The separation between the molecules and the surface increases by 1.
View Article and Find Full Text PDFOxygen adatoms on the MoO/Mo(110) surface are observed to be removed when a sufficiently large bias is applied between the scanning tunneling microscope tip and the surface. Experimental observations, such as the bias polarity dependence of adatom removal and the observation of an intermediate state, indicate that the adatom penetrates the surface oxide layer. Through the comparison of finite element method simulations with various experimental relationships, the electric field is concluded to be the sole contributor to adatom penetration into the surface oxide layer.
View Article and Find Full Text PDFWe demonstrate a simple method to significantly improve the sharpness of standard silicon probes for an atomic force microscope or to repair a damaged probe. The method is based on creating and maintaining a strong, spatially localized electric field in the air gap between the probe tip and the surface of conductive sample. Under these conditions, nanostructure growth takes place on both the sample and the tip.
View Article and Find Full Text PDFUnderstanding molecular switching between different charge states is crucial to further progress in molecule-based nano-electronic devices. Herein we have employed scanning tunnelling microscopy to visualize different charge states of a single C60 molecule within a molecular layer grown on the WO2/W(110) surface. The results obtained demonstrate that individual C60 molecules within the layer switch between neutral and negatively charged states in the temperature range of 220-260 K over the time scale of the experiment.
View Article and Find Full Text PDF