The molecular characteristics and rheological properties of three UHMWPE samples were investigated. The high-temperature GPC method was used for characterizing UHMWPE samples used. The interpretation of the measurement results was based on calibration using the PS standard and the approximation of the PS data by linear and cubic polynomials, as well as on the data for linear PE.
View Article and Find Full Text PDFPhotocatalysis is a fascinating process in which a photocatalyst plays a pivotal role in driving a chemical reaction when exposed to light. Its capacity to harness light energy triggers a cascade of reactions that lead to the formation of intermediate compounds, culminating in the desired final product(s). The essence of this process is the interaction between the photocatalyst's excited state and its specific interactions with reactants, resulting in the creation of intermediates.
View Article and Find Full Text PDFQuantum machine learning (QML), ML on quantum computers, offers a promising approach for discovering and screening novel materials. This study introduces a hybrid classical-quantum ML method using a variational quantum classifier to identify simple perovskite structures within a data set of ABO compounds. The model is trained using a data set of 397 known ABO compounds, with 254 perovskites and 143 non-perovskite structures labeled as +1 and -1, respectively.
View Article and Find Full Text PDFBlended films comprising poly(butyl acrylate) (PBA)-grafted cellulose nanocrystals (CNCs) and poly(3-hexylthiophene) (P3HT), exhibited more intense photoluminescence (PL) and longer PL emission lifetimes compared to pristine P3HT films. Optical absorption and photoluminescence spectra indicated reduced torsional disorder i.e.
View Article and Find Full Text PDFThe binding process of angiotensin-converting enzyme 2 (ACE2) to the receptor-binding domain (RBD) of the severe acute respiratory syndrome-like coronavirus 2 spike protein was investigated using molecular dynamics simulation and the three-dimensional reference interaction-site model theory. The results suggested that the protein-binding process consists of a protein-protein approaching step, followed by a local structural rearrangement step. In the approaching step, the interprotein interaction energy decreased as the proteins approached each other, whereas the solvation free energy increased.
View Article and Find Full Text PDFUnlabelled: In response (Kovalenko and Neburchilov, J. Mol.
Model: 28:33, 1) to the comment (Gusarov, J.
Recently, A. Kovalenko et al. reported the computational study of molecular structure and energetics of CO + H reduction reaction on Cu-, CuO-, Fe-, and FeO-based nanocatalysts in the J.
View Article and Find Full Text PDFWe present the electrical properties of zinc phthalocyanine covalently conjugated to cellulose nanocrystals (CNC@ZnPc). Thin films of CNC@ZnPc sandwiched between two gold electrodes showed pronounced hysteresis in their current-voltage characteristics. The layered metal-organic-metal sandwich devices exhibit distinct high and low conductive states when bias is applied, which can be used to store information.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2021
We present a potential solution to the problem of extraction of photogenerated holes from CdS nanocrystals and nanowires. The nanosheet form of CN is a low-band-gap ( = 2.03 eV), azo-linked graphenic carbon nitride framework formed by the polymerization of melem hydrazine (MHP).
View Article and Find Full Text PDFThe harvesting of hot carriers produced by plasmon decay to generate electricity or drive a chemical reaction enables the reduction of the thermalization losses associated with supra-band gap photons in semiconductor photoelectrochemical (PEC) cells. Through the broadband harvesting of light, hot-carrier PEC devices also produce a sensitizing effect in heterojunctions with wide-band gap metal oxide semiconductors possessing good photostability and catalytic activity but poor absorption of visible wavelength photons. There are several reports of hot electrons in Au injected over the Schottky barrier into crystalline TiO and subsequently utilized to drive a chemical reaction but very few reports of hot hole harvesting.
View Article and Find Full Text PDFChemical similarity-based approaches employed to repurpose or develop new treatments for emerging diseases, such as COVID-19, correlates molecular structure-based descriptors of drugs with those of a physiological counterpart or clinical phenotype. We propose novel descriptors based on a COSMO-RS (short for conductor-like screening model for real solvents) σ-profiles for enhanced drug screening enabled by machine learning (ML). The descriptors' performance is hereby illustrated for nucleotide analogue drugs that inhibit the ribonucleic acid-dependent ribonucleic acid polymerase, key to viral transcription and genome replication.
View Article and Find Full Text PDFWe report highly fluorescent cellulose nanocrystals (CNCs) formed by conjugating a carboxylated zinc phthalocyanine (ZnPc) to two different types of CNCs. The conjugated nanocrystals (henceforth called ZnPc@CNCs) were bright green in color and exhibited absorption and emission maxima at ∼690 and ∼715 nm, respectively. The esterification protocol employed to covalently bind carboxylated ZnPc to surface hydroxyl group rich CNCs was expected to result in a monolayer of ZnPc on the surface of the CNCs.
View Article and Find Full Text PDFLeading edge p-i-n type halide perovskite solar cells (PSCs) severely underperform n-i-p PSCs. p-i-n type PSCs that use PEDOT:PSS hole transport layers (HTLs) struggle to generate open-circuit photovoltage values higher than 1 V. NiO HTLs have shown greater promise in achieving high values albeit inconsistently.
View Article and Find Full Text PDFIn this work, we will address different aspects of self-consistent field coupling of computational chemistry methods at different time and length scales in modern materials and biomolecular science. Multiscale methods framework yields dramatically improved accuracy, efficiency, and applicability by coupling models and methods on different scales. This field benefits many areas of research and applications by providing fundamental understanding and predictions.
View Article and Find Full Text PDFJ Phys Condens Matter
October 2016
We propose a closure to the integral equations of molecular theory of solvation, particularly suitable for polar and charged macromolecules in electrolyte solution. This includes such systems as oligomeric polyelectrolytes at a finite concentration in aqueous and various non-aqueous solutions, as well as drug-like compounds in solution. The new closure by Kobryn, Gusarov, and Kovalenko (KGK closure) imposes the mean spherical approximation (MSA) almost everywhere in the solvation shell but levels out the density distribution function to zero (with the continuity at joint boundaries) inside the repulsive core and in the spatial regions of strong density depletion emerging due to molecular associative interactions.
View Article and Find Full Text PDFAlthough better means to model the properties of bulk heterojunction molecular blends are much needed in the field of organic optoelectronics, only a small subset of methods based on molecular dynamics- and Monte Carlo-based approaches have been hitherto employed to guide or replace empirical characterization and testing. Here, we present the first use of the integral equation theory of molecular liquids in modelling the structural properties of blends of phenyl-C-butyric acid methyl ester (PCBM) with poly(3-hexylthiophene) (P3HT) and a carboxylated poly(3-butylthiophene) (P3BT), respectively. For this, we use the Reference Interaction Site Model (RISM) with the Universal Force Field (UFF) to compute the microscopic structure of blends and obtain insight into the miscibility of its components.
View Article and Find Full Text PDFPlant biomass recalcitrance, a major obstacle to achieving sustainable production of second generation biofuels, arises mainly from the amorphous cell-wall matrix containing lignin and hemicellulose assembled into a complex supramolecular network that coats the cellulose fibrils. We employed the statistical-mechanical, 3D reference interaction site model with the Kovalenko-Hirata closure approximation (or 3D-RISM-KH molecular theory of solvation) to reveal the supramolecular interactions in this network and provide molecular-level insight into the effective lignin-lignin and lignin-hemicellulose thermodynamic interactions. We found that such interactions are hydrophobic and entropy-driven, and arise from the expelling of water from the mutual interaction surfaces.
View Article and Find Full Text PDFThe X-ray crystal structure-based models of Iα cellulose nanocrystals (CNC), both pristine and containing surface sulfate groups with negative charge 0-0.34 e/nm(2) produced by sulfuric acid hydrolysis of softwood pulp, feature a highly polarized "crystal-like" charge distribution. We perform sampling using molecular dynamics (MD) of the structural relaxation of neutral pristine and negatively charged sulfated CNC of various lengths in explicit water solvent and then employ the statistical mechanical 3D-RISM-KH molecular theory of solvation to evaluate the solvation structure and thermodynamics of the relaxed CNC in ambient aqueous NaCl solution at a concentration of 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2015
Two isostructural low-band-gap small molecules that contain a one-atom substitution, S for Se, were designed and synthesized. The molecule 7,7'-[4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene]bis[6-fluoro-4-(5'-hexyl-2,2'-bithiophen-5-yl)benzo[c][1,2,5]thiadiazole] (1) and its selenium analogue 7,7'-[4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene]bis[6-fluoro-4-(5'-hexyl-2,2'-bithiophen-5-yl)benzo[c][1,2,5]selenodiazole] (2) are both based on the electron-rich central unit benzo[1,2-b:4,5-b']dithiophene. The aim of this work was to investigate the effect of one-atom substitution on the optoelectronic properties and photovoltaic performance of devices.
View Article and Find Full Text PDFWe present a method of DPD simulation based on a coarse-grained effective pair potential obtained from the DRISM-KH molecular theory of solvation. The theory is first used to calculate the radial distribution functions of all-atom solute monomers in all-atom solvent and then to invert them into an effective pair potential between coarse-grained beads such that their fluid without solvent accounts for molecular specificities and solvation effects in the all-atom system. Bonded interactions are sampled in relatively short MD of the all-atom system and modeled with best multi-Gaussian fit.
View Article and Find Full Text PDFJ Phys Chem A
February 2014
Density functional theory (DFT), Møller-Plesset second-order perturbation theory (MP2), and semiempirical methods are employed for the geometry optimization and thermochemistry analysis of π-π stacked di-, tri-, tetra-, and pentamer aggregates of the fused polycyclic aromatic hydrocarbons (PAHs) naphthalene, anthracene, phenanthrene, tetracene, pyrene, and coronene as well as benzene. These aggregates (stabilized by dispersion interactions) are highly relevant to the intermolecular aggregation of asphaltenes, major components of heavy petroleum. The strength of π-π stacking interaction is evaluated with respect to the π-stacking distance and thermochemistry results, such as aggregation enthalpies, entropies, and Gibbs free energies (ΔG(298)).
View Article and Find Full Text PDFEfficient conversion of lignocellulosic biomass to second-generation biofuels and valuable chemicals requires decomposition of resilient plant cell wall structure. Cell wall recalcitrance varies among plant species and even phenotypes, depending on the chemical composition of the noncellulosic matrix. Changing the amount and composition of branches attached to the hemicellulose backbone can significantly alter the cell wall strength and microstructure.
View Article and Find Full Text PDFSimulations of microphase separation are carried out using the dissipative particle dynamics (DPD). By varying the concentration and temperature of resin solutions we explore mesomorphologies supported by the all-atom models. We found that for a low degree of functionalization the homogeneously distributed ionomers self-assemble into spherical micelles at solid loads below 31 wt%, subject to the activation energy barrier for the gradual growth of pre-micellar aggregates.
View Article and Find Full Text PDFWe developed a technique to decrease memory requirements when solving the integral equations of three-dimensional (3D) molecular theory of solvation, a.k.a.
View Article and Find Full Text PDF