This article presents an analysis of kinetic studies of dry methane reforming (DRM) in a reactor with a membrane catalyst (RMC) in the modes of a contactor with "diffusion" and "forced" mass transfer. Comparison of the specific rate constants of the methane dissociation reaction in membrane and traditional reactors confirmed the phenomenon of intensification of dry methane reforming in a membrane catalyst (MC). It has been experimentally established that during DRM, a temperature gradient arises in the channels of the pore structure of the membrane catalyst, characterized by a decrease in temperature towards the inner volume of the MC, and initiates the phenomenon of thermal slip.
View Article and Find Full Text PDFThe article presents the results of an experimental comparison of methane transport in the pore structure of a membrane catalyst under isothermal and non-isothermal Knudsen diffusion conditions. It is shown that under the conditions of non-isothermal Knudsen diffusion in the pore structure of the membrane catalyst, there is a coupling of dry reforming of the methane (DRM) and gas transport, which leads to the intensification of this process. The reasons for the intensification are changes in the mechanism of gas transport, an increase in the rate of mass transfer, and changes in the mechanism of some stages of the DRM.
View Article and Find Full Text PDFIn the paper, the results of production of Ag inkjet printed interdigital transducers to the acoustic delay line based on Y-cut X-propagation direction of lithium niobate plate for the frequency range from 1 to 14 MHz are presented. Additionally, morphological, structural, and electro-physical characteristics of the obtained electrodes were investigated. Mathematical modeling of the excitation of acoustic waves by these electrode structures was carried out.
View Article and Find Full Text PDF