The Leidenfrost effect is a phenomenon in which a liquid, poured onto a glowing surface significantly hotter than the liquid's boiling point, produces a layer of vapor that prevents the liquid from rapid evaporation. Rather than making physical contact, a drop of water levitates above the surface. The temperature above which the phenomenon occurs is called the Leidenfrost temperature.
View Article and Find Full Text PDFBased on angularly and vibrationally resolved electron spectroscopy measurements in acetylene, we report the first observation of anomalously strong vibrational anisotropy of resonant Auger scattering through the C 1s→π* excited state. We provide a theoretical model explaining the new phenomenon by three coexisting interference effects: (i) interference between resonant and direct photoionization channels, (ii) interference of the scattering channels through the core-excited bending states with orthogonal orientation of the molecular orbitals, (iii) scattering through two wells of the double-well bending mode potential. The interplay of nuclear and electronic motions offers in this case a new type of nuclear wave packet interferometry sensitive to the anisotropy of nuclear dynamics: whether which-path information is available or not depends on the final vibrational state serving for path selection.
View Article and Find Full Text PDFWe present a dynamical theory of nonlinear absorption and propagation of laser pulses with duration in the microsecond time domain. The general theory is applied to fullerene C(60) because of its good optical limiting properties, namely, a rather low ground state absorption and a strong triplet-triplet absorption. It is shown that sequential absorption involving strong triplet-triplet transitions is the major mechanism of nonlinear absorption.
View Article and Find Full Text PDF