Depth resolved coherence gating along with Doppler shift detection of the carrier frequency is used for one predetermined velocity mapping in different flows. Bidirectional rapid scanning optical delay of optical coherence tomography system is applied in the reference arm. Tilted capillary entry is used as a hydrodynamic phantom to model a sign-variable flow with complex geometry.
View Article and Find Full Text PDFThe experimental methods of Doppler optical coherence tomography are applied for two-dimensional flow mapping of highly scattering fluid in flow with complex geometry. Converging flow (die entry) is used to demonstrate non-invasive methods to map varying velocity profiles before and after the entry. Complex geometry flow is scanned with approximately 10 x 10 x 10 microm3 spatial resolution.
View Article and Find Full Text PDFThe optical coherence tomography method was explored for two-dimensional flow mapping of a highly scattering fluid in flow with complex geometry. Converging flow (capillary entry) with 4:1 constriction was used for demonstration of non-invasive and remote methods of mapping varying velocity profiles. Downstream of the geometry was scanned with approximately 10 x 10 x 10 microm3 spatial resolution and structural imaging of the lumen and images of one particular velocity were acquired.
View Article and Find Full Text PDFWe describe a technique that uses Doppler optical coherence tomography to estimate accurately the scattering fluid-flow velocity without a priori knowledge of the Doppler angle. Our technique is based on the combined use of the Doppler shift on the interference signal and the Doppler spectrum broadening caused by the particles moving across the probe beam. It is shown that the estimated values of the Doppler angle and average fluid velocity from the experiments agree well with the preset values.
View Article and Find Full Text PDF