The holographic conceptual approach to cognitive processes in the human brain suggests that, in some parts of the brain, each part of the memory (a neuron or a group of neurons) contains some information regarding the entire data. In Dolev and Frenkel (2010, 2012) we demonstrated how to encode data in a holographic manner using the Walsh-Hadamard transform. The encoding is performed on randomized information, that is then represented by a set of Walsh-Hadamard coefficients.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
September 2013
We present an optical computing system to solve NP-hard problems. As nano-optical computing is a promising venue for the next generation of computers performing parallel computations, we investigate the application of submicron, or even subwavelength, computing device designs. The system utilizes a setup of exponential sized masks with exponential space complexity produced in polynomial time preprocessing.
View Article and Find Full Text PDF