J Med Chem
December 2011
Syntheses, biological evaluation as 5-HT(6) receptor (5-HT(6)R) antagonists, and structure-activity relationships for a series of novel 5,7-disubstituted (3-arylsulfonyl-pyrazolo[1,5-a]pyrimidins are disclosed. The molecule conformational flexibility in the series is restricted by formation of the intramolecular hydrogen bond between 3-sulfo and 2-methylamino groups, which renders high potency and high selectivity to block serotonin-induced responses in HEK-293 cells stably expressing human 5-HT(6)R. In this work, we tested the hypothesis if addition of a positively ionizable group (PI) to the pyrimidine ring of the scaffold members in positions 5, 6, or 7 could further increase their 5HT(6)R blocking potency.
View Article and Find Full Text PDFSyntheses, biological evaluation, and structure-activity relationships for a series of novel 2-substituted 3-benzenesulfonyl-5,6-dimethyl-pyrazolo[1,5-a]pyrimidines are disclosed. In spite of a wide, four orders of magnitude, SAR range (K(i) varied from 260 pM to 2.96 μM), no significant correlation of 5-HT(6)R antagonistic potency was observed with major physiochemical characteristics, such as molecular weight, surface polar area, cLogP, or number of rotatable bonds.
View Article and Find Full Text PDFSyntheses of a series of novel 3-sulfonyl-pyrazolo[1,5-a]pyrimidines and their 5-HT(6) receptor antagonistic structure-activity relationship are disclosed. The nature and position of substituents, which affect their receptor antagonistic activity, are analyzed. Among all synthesized derivatives, {3-(3-chlorophenylsulfonyl)-5,7-dimethyl-pyrazolo[1,5-a]pyrimidin-2-yl}-methyl-amine 33 (K(i)=190 pM), (3-phenylsulfonyl-7-methyl-pyrazolo[1,5-a]pyrimidin-2-yl)-methyl-amine 44 (K(i)=240 pM), (3-phenylsulfonyl-5-metoxymethyl-7-methyl-pyrazolo[1,5-a]pyrimidin-2-yl)-methyl-amine 50 (K(i)=270 pM), and (3-phenylsulfonyl-5-methyl-7-metoxymethyl-pyrazolo[1,5-a]pyrimidin-2-yl)-methyl-amine 52 (K(i)=280 pM) are the most potent antagonists of the 5-HT(6) receptors.
View Article and Find Full Text PDFExpert Opin Ther Pat
September 2010
Importance Of The Field: Among the GPCR subclasses that have been discovered to date, 5-HT receptors are especially attractive as key biological targets with enormous clinical importance. In particular, during the last decade, the 5-HT(6) receptor has gained increasing attention due to extensive cellular functions. It has also been suggested that its activity can be mediated by inverse agonists.
View Article and Find Full Text PDF5-HT(6) receptors are exclusively localized in the CNS and have high affinity with many psychotropic agents. Though the role of this receptor in many CNS diseases is widely anticipated, lack of definite progress in the development of 5-HT(6) receptor-oriented drugs indicates a need for further discoveries of novel chemotypes with high potency and high selectivity to the receptor. Here we present preparations and biological evaluation of a series of (3-phenylsulfonylcycloalkano[e and d]pyrazolo[1,5-a]pyrimidin-2-yl)amines.
View Article and Find Full Text PDFBioorg Med Chem
July 2010
A number of 3-(phenylsulfonyl)thieno[2,3-e][1,2,3]triazolo[1,5-a]pyrimidines were prepared and their 5-HT6 receptor binding affinity and ability to inhibit the functional cellular responses to serotonin were evaluated. 3-[(3-chlorophenyl)sulfonyl]-N-(tetrahydrofuran-2-ylmethyl)thieno[2,3-e][1,2,3]triazolo[1,5-a]pyrimidin-5-amine 2{5,26} appeared to be the most active in a functional assay (IC50=29.0 nM) and 3-(phenylsulfonyl)-N-(2-thienylmethyl) thieno[2,3-e][1,2,3]triazolo[1,5-a]pyrimidin-5-amine 2{1,28} demonstrated the greatest affinity in a 5-HT6 receptor radioligand binding assay (Ki=1.
View Article and Find Full Text PDFHere we present the solution phase parallel synthesis of a combinatorial library consisting of 776 new substituted 3-phenylsulfonyl-[1,2,3]triazolo[1,5-a]quinazolines and a study of the relation of their structure with a 5-HT(6) receptor antagonistic activity in a functional cell (HEK 293) analysis and radioligand competitive binding. We have found highly active and selective 5-HT(6)R antagonists. The most active 5-HT(6)R antagonists have IC(50) <100 nM in a functional assay, and K(i) <10 nM in a binding assay, which is 100 times higher than the activity with respect to other serotonin receptors.
View Article and Find Full Text PDFSynthesis and biological evaluation of 1 ('angular') and 2 ('linear') cycloalkane-annelated 3-phenylsulfonyl-pyrazolo[1,5-a]pyrimidines as novel ligands of the 5-HT(6) receptors are disclosed. The new compounds 1 and 2 are highly selective antagonists of the receptor with sub-nanomolar affinities (K(i)<1 nM). In its structure, this new chemotype lacks a basic ionizable side chain, which is considered as the characteristic feature of the 5-HT(6) receptor antagonists pharmacophore model.
View Article and Find Full Text PDFA series of novel 8-sulfonyl-substituted 2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indoles (THPI) has been synthesized and their ability to interact with 5-HT(6) receptors evaluated in cell-based and radioligand binding assays. Amongst evaluated THPIs, compounds 9.HCl and 20.
View Article and Find Full Text PDFArch Pharm (Weinheim)
December 2009
Synthesis, biological evaluation, and structure-activity relationships (SAR) for a series of novel gamma-carboline analogues of Dimebon are described. Among the studied compounds, tetrahydro-gamma-carboline 5b (2,8-dimethyl-5-[cis-2-pyridin-3-ylvinyl]-2,3,4,5-tetrahydro-carboline) has been identified as the most potent small molecule antagonist, in particular against histamine H(1) and serotonin 5-HT(6) receptors (IC(50) < 0.45 microM and IC(50) = 0.
View Article and Find Full Text PDFSynthesis, biological evaluation and structure-activity relationships for a series of novel gamma-carboline analogues of Dimebon are described. Among the studied compounds, gamma-carbolines 3{8} and 3{14} have been identified as potent small molecule antagonists of histamine H(1) (IC(50)=0.1 microM) and serotonin 5-HT(6) (IC(50)=0.
View Article and Find Full Text PDFChemokines are a family of small proteins inducing directed cell migration via specific chemokine receptors, which play important roles in a variety of biological and pathological processes. Their respective ligands act as proinflammatory mediators that primarily control leukocyte migration into selected tissues and upregulation of adhesion receptors, and also have a role in pathological conditions that require neovascularization. Therapeutic strategies based on modulation of chemokine receptor pathways were reported to be promising clinical strategies in the treatment of inflammatory diseases and viral infections.
View Article and Find Full Text PDFProteolytic caspase enzymes play a central role in cell apoptosis, or programmed cell death, often as integrating elements of different stimuli leading to the cell death. Since blockade of apoptotic pathways are fundamental for cell survival and proliferation, particularly in cancer cells, the activation of caspases is an attractive target for anticancer therapy. This review describes some of the druggable therapeutic targets thus far identified within the core apoptotic machinery, the corresponding drugs that have been developed, their effects on caspase-dependent apoptotic pathways and their potential impact on the therapy of cancer.
View Article and Find Full Text PDFWith several successful anticancer drugs on the market and numerous compounds in clinical developments, antimitotic agents represent an important category of anticancer agents. However, clinical utility of the tubulin-binding agents is somewhat limited due to multiple drug resistance (MDR), poor pharmacokinetics and therapeutic index. There is ongoing need for the modulators of other intracellular targets that result in the same anti-mitotic effect without adverse effects of "traditional" tubulin binders.
View Article and Find Full Text PDFRegulation of gene expression is mediated by several mechanisms such as DNA methylation, ATP-dependent chromatin remodeling, and post-translational modifications of histones. The latter mechanism includes dynamic acetylation and deacetylation of epsilon-amino groups of lysine residues present in the tail of the core histones. Enzymes responsible for the reversible acetylation/deacetylation processes are histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively.
View Article and Find Full Text PDFHedgehog (Hh) and Wnt signaling pathways play key roles in growth and patterning during embryonic development and in the postembryonic regulation of stem cell number in the epithelia. Numerous studies link aberrant modulation of these pathways to specific human diseases. This article focuses on general aspects of Hh and Wnt signal transduction and biologic molecules involved in the respective signaling cascades.
View Article and Find Full Text PDFAnticancer Agents Med Chem
March 2007
This review highlights structural diversity of antimitotic agents. In particular, we emphasized current antimitotic therapies based on modulation of microtubule dynamics. With several successful anticancer drugs on the market and numerous compounds in clinical developments, tubulin-binding agents remain among the most important categories of anticancer agents.
View Article and Find Full Text PDFExpert Opin Investig Drugs
January 2007
VEGFs and a respective family of tyrosine kinases receptors (VEGFRs) are key proteins modulating angiogenesis, the formation of new vasculature from an existing vascular network. There has been considerable evidence in vivo, including clinical observations, that abnormal angiogenesis is implicated in a number of disease conditions, which include rheumatoid arthritis, inflammation, cancer, psoriasis, degenerative eye conditions and others. Antiangiogenic therapies based on inhibition of VEGF/VEGFR signalling were reported to be powerful clinical strategies in oncology and ophthalmology.
View Article and Find Full Text PDFIn this work, we explored several original combinatorial derivatization patterns for the 3,4-dihydro-2H-1,4-benzothiazine scaffold. The synthesis begins with commercially available 4-chloro- and 4-fluoro-3-nitrobenzoates and employs a sequence of moderate and high-yielding reactions that display a relatively high substituent tolerance. Simple manual techniques for parallel reactions were coupled with easy workup and purification procedures to give high-purity final products.
View Article and Find Full Text PDFThe majority of marketed and late stage development kinase inhibitors are reported to be ATP-competitive. As a result, many promising drug candidates display non-specific activity that results in undesired physiological effects. There is growing interest towards non-ATP competitive kinase inhibitors, as they are expected to yield highly specific and efficacious molecules devoid of non-mechanistic toxicity.
View Article and Find Full Text PDFA reliable and high-yielding procedure for preparation of 7-aryl and 7-heteroaryl derivatives of (+/-)-vasicine in two steps from the naturally occurring material is described. This protocol broadens the chemical space for selective modifications of the vasicine tricyclic structure, thereby making it a valuable starting point for the development of novel compound libraries with potentially beneficial biological profiles.
View Article and Find Full Text PDFWe present a convenient synthesis of novel heteroaryl-fused 3-oxo-1,4-thiazepine-5-carboxamides and 5-oxo-1,4-thiazepine-3-carboxamides using a modification of four-component Ugi condensation. We demonstrate the usefulness and versatility of the developed approach for the synthesis of variously substituted compounds and discuss the scope and limitations of the chemistry involved.
View Article and Find Full Text PDFEstrogen is a hormone critical in the development, normal physiology and pathophysiology of numerous human tissues. The effects of estrogen have traditionally been solely ascribed to estrogen receptor alpha (ERalpha) and more recently ERbeta, members of the soluble, nuclear ligand-activated family of transcription factors. We have recently shown that the seven-transmembrane G protein-coupled receptor GPR30 binds estrogen with high affinity and resides in the endoplasmic reticulum, where it activates multiple intracellular signaling pathways.
View Article and Find Full Text PDFCurr Drug Discov Technol
October 2004
Primary high-throughput screening of commercially available small molecules collections often results in hit compounds with unfavorable ADME/Tox properties and low IP potential. These issues are addressed empirically at follow-up lead development and optimization stages. In this work, we describe a rational approach to the optimization of hit compounds discovered during screening of a kinase focused library against abl tyrosine kinase.
View Article and Find Full Text PDFA convenient synthesis of novel 8-sulfonyl-1,3-dioxo-4-methyl-2,3-dihydro-1H-pyrrolo[3,4-c]quinolines is described. As key steps to assemble the target molecular scaffold, our method features (a) Pfitzinger reaction of isatin-5-sulfonate 1 with methyl 3-oxo-3-phenylpropanoate, (b) formation of 1-(1H-pyrazol-4-yl)-1H-pyrrole-2,5-dione intermediate 5, and (c) reaction of sulfinic acid 9 with acrylate or methylacrylate leading to the corresponding sulfonyl propionates. Two compounds, ester 11 and morpholide 13, have been identified as potent inhibitors of caspase-3 with IC50 = 6 nM.
View Article and Find Full Text PDF