Neuronal calcium sensors are a family of N-terminally myristoylated membrane-binding proteins possessing a different intracellular localization and thereby targeting unique signaling partner(s). Apart from the myristoyl group, the membrane attachment of these proteins may be modulated by their N-terminal positively charged residues responsible for specific recognition of the membrane components. Here, we examined the interaction of neuronal calcium sensor-1 (NCS-1) with natural membranes of different lipid composition as well as individual phospholipids in form of multilamellar liposomes or immobilized monolayers and characterized the role of myristoyl group and N-terminal lysine residues in membrane binding and phospholipid preference of the protein.
View Article and Find Full Text PDFMolecules
July 2019
Recently, we have found that calcium binding proteins of the EF-hand superfamily (i.e., a large family of proteins containing helix-loop-helix calcium binding motif or EF-hand) contain two types of conserved clusters called cluster I ('black' cluster) and cluster II ('grey' cluster), which provide a supporting scaffold for the Ca binding loops and contribute to the hydrophobic core of the EF-hand domains.
View Article and Find Full Text PDFThe cyclic GMP phosphodiesterase gamma-subunit (PDEgamma) was shown to belong to the family of natively unfolded proteins. Increasing temperature transforms the protein into a more ordered (but still relatively disordered) conformation. The C-terminal part of PDEgamma has a high-affinity zinc-binding site (Kd approximately 1 microM), with His75 and His79 being directly involved into the coordination of Zn2+.
View Article and Find Full Text PDF