In this work, we present a mean-field model that takes into account the key components of electrical double layer theory at the interface between an electrode and an electrolyte solution. The model considers short-range specific interactions between different species, including electrode-ion repulsion, the hydration of ions, dielectric saturation of solvent (water), and excluded volume (steric) interactions between species. By solving a modified Poisson-Boltzmann equation, which is derived from the grand thermodynamic potential of an inhomogeneous electrolyte solution, and using the appropriate results of quantum chemistry calculations on the hydration of ions, we can accurately approximate the differential capacitance profiles of aqueous electrolyte solutions at the boundary with a silver electrode.
View Article and Find Full Text PDFThe metallic lithium electrode has major concerns such as extremely high reactivity and nonuniform needle-like electrodeposition, limiting its wide application as a negative electrode in secondary batteries. Its reactions with the electrolyte leading to solid electrolyte interphase (SEI) formation play an important role, and controlling its composition and properties can help to overcome both difficulties. Even though solid electrolyte interphase chemistry and properties seem to be well known, many surface chemistry experiments reported are not perfect with respect to the purity needed for Li studies and can be interpreted alternatively.
View Article and Find Full Text PDFThis review presents the state-of-the-art of optical sensors for determination of biogenic amines (BAs) in food by publications covering about the last 10 years. Interest in the development of rapid and preferably on-site methods for quantification of BAs is based on their important role in implementation and regulation of various physiological processes. At the same time, BAs can develop in different kinds of food by fermentation processes or microbial activity or arise due to contamination, which induces toxicological risks and food poisoning and causes serious health issues.
View Article and Find Full Text PDFBackground: Although multiple approaches have been used to create biological pacemakers in animal models, induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have not been investigated for this purpose. We now report pacemaker function of iPSC-CMs in a canine model.
Methods And Results: Embryoid bodies were derived from human keratinocytes, their action potential characteristics determined, and their gene expression profiles and markers of differentiation identified.
Mesenchymal stem cells natively circulating or delivered into the blood stream home to sites of injury. The mechanism of mesenchymal stem cell homing to sites of injury is poorly understood. We have shown that the development of apoptosis in endothelial cells stimulates endothelial cell adhesiveness for mesenchymal stem cells.
View Article and Find Full Text PDFIntroduction: Delivered systemically or natively circulating mesenchymal stem cells accumulate in injured tissues. During homing mesenchymal stem cells adhere to endothelial cells and infiltrate underlying tissue. Previously we have shown that adhesiveness of endothelial cells for mesenchymal stem cells correlates with the inhibition of mitochondrial function of endothelial cells and secretion of von Willebrand factor.
View Article and Find Full Text PDFDuring the past few years, studies involving the implantation of stem cells, chemical factors, and scaffolds have demonstrated the ability to augment the mammalian heart's native regenerative capacity. Scaffolds comprised of extracellular matrix (ECM) have been used to repair myocardial defects. These scaffolds become populated with myocytes and provide regional contractile function, but quantification of the myocyte population has not yet been conducted.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) participate in the wound healing process in mammalians. Adhesion of MSCs to endothelium is a key step in the homing of MSCs circulating in the bloodstream to the sites of injury and inflammation. Because endothelial cells (ECs) may become apoptotic under certain pro-inflammatory conditions, we investigated the effects of pro-inflammatory, TNF-alpha and IL-1 beta, and pro-apoptotic agents, actinomycin D, cycloheximide, okadaic acid, wortmannin, and staurosporine, on human MSCs (hMSCs) adhesion to ECs.
View Article and Find Full Text PDFThe need to regenerate tissue is paramount, especially for the heart that lacks the ability to regenerate after injury. The urinary bladder extracellular matrix (ECM), when used to repair a right ventricular defect, successfully regenerated some mechanical function. The objective of the current study was to determine whether the regenerative effect of ECM could be improved by seeding the patch with human mesenchymal stem cells (hMSCs) enhanced to differentiate down a cardiac linage.
View Article and Find Full Text PDFCulture-expanded human mesenchymal stem cells (hMSCs) are increasingly used in a variety of preclinical and clinical studies. However, these cells have a low rate of engraftment to bone marrow or damaged tissues. Several laboratories have shown that during isolation and subculturing mesenchymal stem cells quickly lose the expression of CXCR4, the key receptor responsible for lymphocytes and hematopoietic stem cell homing.
View Article and Find Full Text PDFHeart failure survival after diagnosis has barely changed for more than half a century. Recently, investigation has focused on differentiation of stem cells in vitro and their delivery for use in vivo as replacement cardiac contractile elements. Here we report preliminary results using mesenchymal stem cells partially differentiated to a cardiac lineage in vitro.
View Article and Find Full Text PDFThe voltage-gated potassium channel Kv4.3 was coexpressed with its beta-subunit Kv channel-interacting protein 2 and the angiotensin type 1 receptor in HEK-293 cells. Proteomic analysis of proteins coimmunoprecipitated with Kv4.
View Article and Find Full Text PDFStem cells show promise for repair of damaged cardiac tissue. Little is known with certainty, however, about the distribution of these cells once introduced in vivo. Previous attempts at tracking delivered stem cells have been hampered by the autofluorescence of host tissue and limitations of existing labeling techniques.
View Article and Find Full Text PDFWe investigated effects of the paracrine factors secreted by human mesenchymal stem cells (hMSCs) on endothelial cell migration, extracellular matrix invasion, proliferation, and survival in vitro. Human mesenchymal stem cells were cultured as a monolayer or as three-dimensional aggregates in hanging drops (hMSC spheroids). We performed analysis of paracrine factors in medium conditioned by a monolayer of hMSCs and hMSC spheroids.
View Article and Find Full Text PDFRegenerative medicine approaches for the treatment of damaged or missing myocardial tissue include cell-based therapies, scaffold-based therapies, and/or the use of specific growth factors and cytokines. The present study evaluated the ability of extracellular matrix (ECM) derived from porcine urinary bladder to serve as an inductive scaffold for myocardial repair. ECM scaffolds have been shown to support constructive remodeling of other tissue types including the lower urinary tract, the dermis, the esophagus, and dura mater by mechanisms that include the recruitment of bone marrow-derived progenitor cells, angiogenesis, and the generation of bioactive molecules that result from degradation of the ECM.
View Article and Find Full Text PDFBackground: Extracellular matrix (ECM), a tissue-engineered scaffold, recently demonstrated cardiomyocyte population after myocardial implantation. Surgical restoration of myocardium frequently uses Dacron as a myocardial patch. We hypothesized that an ECM-derived myocardial patch would provide a mechanical benefit not seen with Dacron.
View Article and Find Full Text PDFWe report a novel signal transduction complex of the angiotensin receptor type 1. In this complex the angiotensin receptor type 1 associates with the potassium channel alpha-subunit Kv4.3 and regulates its intracellular distribution and gating properties.
View Article and Find Full Text PDFMinK-related protein (MiRP1 or KCNE2) interacts with the hyperpolarization-activated, cyclic nucleotide-gated (HCN) family of pacemaker channels to alter channel gating in heterologous expression systems. Given the high expression levels of MiRP1 and HCN subunits in the cardiac sinoatrial node and the contribution of pacemaker channel function to impulse initiation in that tissue, such an interaction could be of considerable physiological significance. However, the functional evidence for MiRP1/HCN interactions in heterologous expression studies has been accompanied by inconsistencies between studies in terms of the specific effects on channel function.
View Article and Find Full Text PDFWe tested the ability of human mesenchymal stem cells (hMSCs) to deliver a biological pacemaker to the heart. hMSCs transfected with a cardiac pacemaker gene, mHCN2, by electroporation expressed high levels of Cs+-sensitive current (31.1+/-3.
View Article and Find Full Text PDFHuman mesenchymal stem cells (hMSCs) are a multipotent cell population with the potential to be a cellular repair or delivery system provided that they communicate with target cells such as cardiac myocytes via gap junctions. Immunostaining revealed typical punctate staining for Cx43 and Cx40 along regions of intimate cell-to-cell contact between hMSCs. The staining patterns for Cx45 rather were typified by granular cytoplasmic staining.
View Article and Find Full Text PDFThe counterregulation of catecholamine action by insulin includes insulin-stimulated sequestration of the beta(2)-adrenergic receptor. Herein we examined the signaling downstream of insulin receptor activation, focusing upon the role of 1-phosphatidylinositol 3-kinase and the serine-threonine protein kinase Akt (also known as protein kinase B) in the internalization of beta(2)-adrenergic receptors. Inhibition of 1-phosphatidylinositol 3-kinase by LY294002 blocks insulin-induced sequestration of the beta(2)-adrenergic receptor, implicating Akt in downstream signaling to the beta(2)-adrenergic receptor.
View Article and Find Full Text PDFInsulin counterregulates catecholamine action at several levels, primarily in liver, fat, and adipose tissue. Herein we observe that expression of increased levels of beta(2)-adrenergic receptor increasingly inhibits insulin-stimulated phosphorylation of its primary downstream substrates (IRS-1,2). In Chinese hamster ovary cells, the insulin receptor phosphorylates dominantly Tyr(364) in the C-terminal cytoplasmic domain of the beta-receptor.
View Article and Find Full Text PDF