Publications by authors named "Sergey Chvalun"

To make tissue engineering a truly effective tool, it is necessary to understand how the patterns of specific tissue development are modulated by and depend on the artificial environment. Even the most advanced approaches still do not fully meet the requirements of practical engineering of tracheobronchial epithelium. This study aimed to test the ability of the synthetic and natural nonwoven scaffolds to support the formation of morphological sound airway epithelium including the basement membrane (BM).

View Article and Find Full Text PDF

Further progress in regenerative medicine and bioengineering highly depends on the development of 3D polymeric scaffolds with active biological properties. The most attention is paid to natural extracellular matrix components, primarily collagen. Herein, nonwoven nanofiber materials with various degrees of collagen denaturation and fiber diameters 250-500 nm were produced by electrospinning, stabilized by genipin, and characterized in detail.

View Article and Find Full Text PDF

Reservoir computing systems are promising for application in bio-inspired neuromorphic networks as they allow the considerable reduction of training energy and time costs as well as an overall system complexity. Conductive three-dimensional structures with the ability of reversible resistive switching are intensively developed to be applied in such systems. Nonwoven conductive materials, due to their stochasticity, flexibility and possibility of large-scale production, seem promising for this task.

View Article and Find Full Text PDF

Poly(dimethyl siloxane)-MQ rubber molecular composites are easy to prepare, as it does not require a heterophase mixing of ingredients. They are characterized by perfect homogeneity, so they are very promising as rubber materials with controllable functional characteristics. The manuscript reveals that MQ resin particles can significantly, more than by two orders of magnitude, enhance the mechanical properties of poly(dimethyl siloxane), and, as fillers, they are not inferior to aerosils.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) stabilized with poly(1-vinyl-1,2,4-triazole) (PVT) have been synthesized via a one-pot manner in irradiated solutions of 1-vinyl-1,2,4-triazole (VT) and Au(III) ions. The transmission electron microscopy examinations have shown that the sizes of nanoparticles formed range from 1 to 11 nm and are affected by the ratio of VT to gold ions. To study the kinetics peculiarities of the VT polymerization and assembling of AuNPs, UV-Vis spectroscopy was used.

View Article and Find Full Text PDF

The 3D reconstruction of 100 μm- and 600 μm-thick fibrous poly-L/L-lactide scaffolds was performed by confocal laser scanning microscopy and supported by scanning electron microscopy and showed that the density of the fibers on the side adjacent to the electrode is higher, which can affect cell diffusion, while the pore size is generally the same. Bone marrow mesenchymal stem cells cultured in a 600 μm-thick scaffold formed colonies and produced conditions for cell differentiation. An in vitro study of stem cells after 7 days revealed that cell proliferation and hepatocyte growth factor release in the 600 μm-thick scaffold were higher than in the 100 μm-thick scaffold.

View Article and Find Full Text PDF

A significant drawback of the rigid synthetic vascular prostheses used in the clinic is the mechanical mismatch between the implant and the prosthetic vessel. When placing prostheses with radial elasticity, in which this deficiency is compensated, the integration of the graft occurs more favorably, so that signs of cell differentiation appear in the prosthesis capsule, which contributes to the restoration of vascular tone and the possibility of vasomotor reactions. Aortic prostheses fabricated by electrospinning from a blend of copolymers of vinylidene fluoride with hexafluoropropylene (VDF/HFP) had a biomechanical behavior comparable to the native aorta.

View Article and Find Full Text PDF

Recombinant spidroins (RS; the analogues of silk proteins of spider's web) have multiple properties beneficial for bioengineering, including their suitability for electrospinning and thus, for production of materials with oriented fibers. This makes RS-based matrices potentially effective in stimulating regeneration of peripheral nerves. The restoration of injured nerves also depends on prompt regrowth of blood vessels.

View Article and Find Full Text PDF

A series of carbosilane dendrimers of the 4th, 6th, and 7th generations with a terminal trimethylsilylsiloxane layer was synthesized. Theoretical models of these dendrimers were developed, and equilibrium dendrimer conformations obtained via molecular dynamics simulations were in a good agreement with experimental small-angle X-ray scattering (SAXS) data demonstrating molecule monodispersity and an almost spherical shape. It was confirmed that the glass transition temperature is independent of the dendrimer generation, but is greatly affected by the chemical nature of the dendrimer terminal groups.

View Article and Find Full Text PDF

Compositions based on chitosan/β-glycerophosphate hydrogels with highly porous polylactide granules can be used to obtain moldable bone graft materials that have osteoinductive and osteoconductive properties. To eliminate the influence of such characteristics as chain length, degree of purification, and molecular weight on a designed material, the one-stock chitosan sample was reacetylated to degrees of deacetylation (DD%) of 19.5, 39, 49, 55, and 56.

View Article and Find Full Text PDF

Nowadays, polypropylene-based nonwovens are used in many areas, from filtration to medicine. One of the methods for obtaining such materials is melt electrospinning. In some cases, it is especially interesting to produce composite fibers with a high degree of filling.

View Article and Find Full Text PDF

Designing sensors for toxic compounds such as mercury salts in aqueous solutions still remains one of the most pressing tasks of modern chemical research, since many existing systems do not show enough sensitivity and/or response. In this regard, the opportunities offered by supramolecular approaches can be used to improve both these characteristics by creating a new self-organized smart system. Herein, we show that barium cations, that according to the data of X-ray standing waves do not bind directly to the ionophore molecules in the monolayers at the air/water interface, could be used to efficiently preorganize such molecules to achieve supramolecular architecture.

View Article and Find Full Text PDF

Objectives: The conversion of tissue engineering into a routine clinical tool cannot be achieved without a deep understanding of the interaction between cells and scaffolds during the process of tissue formation in an artificial environment. Here, we have investigated the cultivation conditions and structural features of the biodegradable non-woven material in order to obtain a well-differentiated human airway epithelium.

Materials And Methods: The bilayered scaffold was fabricated by electrospinning technology.

View Article and Find Full Text PDF

Collagen is one of the most promising materials for 3D bioprinting because of its distinguished biocompatibility. Cell-laden constructs made of pure collagen with or without incorporated growth supplements support engineered constructs persistence in culture and are perfectly suitable for grafting. The limiting factor for direct 3D collagen printing was poor printability of collagen solutions, especially admixed with cells or tissue spheroids.

View Article and Find Full Text PDF

Variation of generation number strongly affects the type of ordering found for polybutylcarbosilane dendrimers: G5 dendrimers are liquid-like, G6 are cubic liquid crystals and G7/G8 are disordered close-packed. It was revealed that G6 dendrimers are highly likely to form Im3[combining macron]m lattice structures with the parameter a = 5.15 nm, and a domain size that exceeds 100 nm.

View Article and Find Full Text PDF

A novel high-tech composite biomimetic matrixes for a wide range of medical purposes were prepared. The structure of scaffolds was inspired by the architecture of native decellularized tissue: material consists of a sponge and fibrous components of different spatial geometry based on cellulose acetate with collagen or chitosan filler. The fibrous component was prepared by electrospinning, the sponge - freeze-drying technique.

View Article and Find Full Text PDF

The memristive elements constructed using polymers - polyaniline (PANI) and polyethyleneoxide (PEO) - could be assembled on planar thin films or on 3D fibrous materials. Planar conductive PANI-based materials were made using the Langmuir-Schaefer (LS) method, and the 3D materials - using the electrospinning method which is a scalable technique. We have analyzed the influence of PANI molar mass, natures of solvent and subphase on the crystalline structure, thickness and conductivity of planar LS films, and the influence of PANI molar mass and the PANI-PEO ratio on the morphological and structural characteristics of 3D fibrous materials.

View Article and Find Full Text PDF

Uniaxial tension accompanied by the orientation and crystallization of polymer chains is one of the powerful methods for the improvement of mechanical properties. Crystallization of amorphous isotropic polylactide (PLA) at room temperature is studied for the first time during the drawing of films in the presence of liquid adsorption-active media (ethanol, water-ethanol mixtures, and n-heptane) by the solvent crazing mechanism. The crystalline structure arises only under simultaneous actions of a liquid medium and a tensile stress and does not depend on the nature of the environment.

View Article and Find Full Text PDF

Squid β-chitin has been exfoliated in aqueous acrylic acid (AA), after which a composite film of chitin microfibrils in polyacrylic acid (PAA) has been prepared by in situ polymerization of the AA. The segregated chitin fibrils in the composite are 4-6nm in diameter, with an aspect ratio >250. After drying cast films of the composites containing 1, 2 and 3% (w/w) chitin at 140°C for four hours, there was a dramatic resistance to swelling in water, in that the dried films showed only small changes in shape and properties after four hours immersed in water.

View Article and Find Full Text PDF

Models for the structures of the β-chitin-protein complex of native and deproteinized squid pen (Berryteuthis magister) based on SAXS and WAXS data are proposed. Chitin fibrils of 25 Å in diameter and persistence length of 1200 Å are immersed in protein matrix. Average distance between fibrils is 42 Å.

View Article and Find Full Text PDF