Multicore fibers are promising structures with specific light propagation properties, which can be managed to benefit several applications in optical communications, fiber lasers and amplifiers, high-resolution imaging, and fiber-based sensors. The current use of multicore fibers in laser technology is mainly focused on in-phase coherent beam combining in far-field regions (out-cavity) using bulk optical elements. However, this approach is challenging in terms of the power scalability of all-fiber lasers (intra-cavity), particularly with using low-gain media, where it is needed to provide mode-coupling (supermode propagation) stability along relatively long lengths.
View Article and Find Full Text PDFPolarization-dependent gain (PDG) effect was studied in a conventional core-pumping configuration of bismuth-doped fiber amplifiers (BDFAs) based on PANDA-type phospho- and germanosilicate core fibers. The PDG value was determined as the gain difference between the orthogonal signal polarizations, which was found to be in range of 2.5-3 dB at total gain of >20 dB in such BDFAs.
View Article and Find Full Text PDFIn this Letter, we investigated the potential scalability of output power of a cladding-pumped laser and a power amplifier (booster) based on a multimode Bi-doped fiber (BDF) using the mode-selection approach. We fabricated the multimode double-clad graded-index (GRIN) fiber with a confined Bi-doped germanosilicate glass core with a diameter of ≈30 and ≈60 µm. Using femtosecond (fs) inscription technology with high spatial resolution, Bragg gratings of a special transverse structure allowing the selection of low-order modes were written into the core of BDFs.
View Article and Find Full Text PDFBismuth-doped fibers (BDFs) are considered nowadays as an essential part of the development of novel optical amplifiers, which can provide a significant upgrade to existing fiber optic telecommunication systems, securing multiband data transmission. In this paper, a series of BDF amplifiers (BDFAs) for O-, E-, and S-telecom bands based on a cladding pumping scheme using low-cost multimode semiconductor laser diodes at a wavelength of 0.7-0.
View Article and Find Full Text PDFFor the first time, to the best of the authors' knowledge, a cladding-pumped bismuth-doped fiber laser (BDFL) is demonstrated. A "home-made" Bi-doped germanosilicate fiber with a 125 µm circular outer cladding made of fused silica and coated by a low refractive index polymer is used as an active medium pumped by commercial multimode laser diodes with a total output power of 25 W at 808 nm. We find that the BDFL with a free-running cavity (when feedback is provided by ≈4% back reflection from two bare right-angle cleaved fiber ends) composed of a 100-m-long bismuth-doped fiber is capable of emitting at a wavelength of 1440 nm.
View Article and Find Full Text PDFWe present laser-based methane detection near 1651 nm inside an antiresonant hollow-core fiber (HCF) using photothermal spectroscopy (PTS). A bismuth-doped fiber amplifier capable of delivering up to more than 160 mW at 1651 nm is used to boost the PTS signal amplitude. The design of the system is described, and the impact of various experimental parameters (such as pump source modulation frequency, modulation amplitude, and optical power) on signal amplitude and signal-to-noise ratio is analyzed.
View Article and Find Full Text PDFDetermination of the active centers distribution across the fiber core as well as calculation of absorption cross sections is a challenging task for all types of bismuth-doped fibers. This is due to the low concentration of active centers and the ability of the bismuth ions to form various centers in silica-based glasses. In this work, we demonstrate the results of experimental measurement of radial distribution of bismuth active centers associated with phosphorus in fiber core using the luminescence spectroscopy.
View Article and Find Full Text PDFDuring last decades there has been considerable interest in developing a fiber amplifier for the 1.3-[Formula: see text]m spectral region that is comparable in performance to the Er-doped fiber amplifier operating near 1.55 [Formula: see text]m.
View Article and Find Full Text PDFFor the first time, we report on the fabrication of a bend-insensitive single-mode bismuth (Bi)-doped $ {{\rm P}_2}{{\rm O}_5} {-} {{\rm SiO}_2} $PO-SiO fiber having a depressed cladding design and study its gain characteristics at a spectral region of 1.3-1.4 µm.
View Article and Find Full Text PDFWe report experimental measurements and numerical calculations regarding the photostability of laser-active centers associated with bismuth (BACs) in Bi-doped GeO-SiO glass fibers under pumping at 1550 nm at different temperatures. It was discovered that BACs are unstable under 1550-nm pumping when the temperature is elevated to hundreds of degrees centigrade. A simple numerical model was proposed to account for the discovered instability which turned out to be in good agreement with the experimental data.
View Article and Find Full Text PDFBismuth-doped fiber is a promising active media for pulsed lasers operating in various spectral regions. In this paper, we report on a picosecond mode-locked laser at a wavelength of 1.32 μm, based on a phosphosilicate fiber doped with bismuth.
View Article and Find Full Text PDFThe effect of thermal annealing on the luminescent and laser properties of high-germania-core silicate fibers doped with bismuth was investigated. We studied the behavior of optical absorption assigned to the bismuth-related active centers associated with germanium as well as the behavior of unsaturable absorption in annealed fibers with respect to the Bi content. The dependence of the increment of the active center content on the Bi concentration in the annealed fibers was obtained.
View Article and Find Full Text PDFIt is now almost twenty-five years since the first Erbium-Doped Fiber Amplifier (EDFA) was demonstrated. Currently, the EDFA is one of the most important elements widely used in different kinds of fiber-optic communication systems. However, driven by a constantly increasing demand, the network traffic, growing exponentially over decades, will lead to the overload of these systems ("capacity crunch") because the operation of the EDFA is limited to a spectral region of 1530-1610 nm.
View Article and Find Full Text PDFPhotoinduced reduction of absorption (photobleaching) in bismuth-doped germanosilicate fibers irradiated with 532-nm laser has been observed for the first time. It was demonstrated that bismuth-related active centers having the absorption bands at wavelengths of 1400 and 1700 nm degrade under photoexcitation at 532 nm. The photobleaching process rate was estimated using conventional stretched exponential technique.
View Article and Find Full Text PDFBismuth-doped optical fibers and fiber lasers operating in 1625-1775 nm range have been developed for the first time to the best of our knowledge. Now the existing bismuth-doped lasers, including the result presented in this Letter, can cover O, E, S, C, L, and U telecommunication bands. In addition, new data on the nature of the bismuth-related active center were obtained and discussed.
View Article and Find Full Text PDF