The fractional quantum Hall effect was experimentally discovered in 1982. It was observed that the Hall conductivity σyx of a two-dimensional electron system is quantized, σyx=e2/3h, in the vicinity of the Landau level filling factor ν=1/3. In 1983, Laughlin proposed a trial many-body wave function, which he claimed described a "new state of matter"-a homogeneous incompressible liquid with fractionally charged quasiparticles.
View Article and Find Full Text PDFMany mid- and far-infrared semiconductor photodetectors rely on a photonic response, when the photon energy is large enough to excite and extract electrons due to optical transitions. Toward the terahertz range with photon energies of a few milli-electron volts, classical mechanisms are used instead. This is the case in two-dimensional electron systems, where terahertz detection is dominated by plasmonic mixing and by scattering-based thermal phenomena.
View Article and Find Full Text PDFMetamaterials and plasmonics are powerful tools for unconventional manipulation and harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking in natural materials, such as negative refractive index. Plasmonics offers capabilities of confining light in subwavelength dimensions and enhancing light-matter interactions.
View Article and Find Full Text PDF