An electrochemical hydrogen pump (EHP) with a proton exchange membrane (PEM) used as part of fusion cycle systems successfully combines the processes of hydrogen extraction, purification and compression in a single device. This work comprises a novel study of the effect of ionizing radiation on the properties of the PEM as part of the EHP. Radiation exposure leads to nonspecific degradation of membranes, changes in their structure, and destruction of side and matrix chains.
View Article and Find Full Text PDFIn this study, we performed small-angle X-ray scattering (SAXS) to investigate the structure of Nafion membranes. The effect of freeze/thaw (F/T) cycles (from ambient temperature down to -40 °C) on the membrane nanostructure was considered for the first time. The SAXS measurements were taken for different samples: a commercial Nafion 212 membrane swollen in water and methanol solution, and a water-swollen silica-modified membrane.
View Article and Find Full Text PDFReduced graphene oxide (RGO) and RGO modified by ozone (RGO-O) and fluorine (RGO-F) were synthesized. Pt nanoparticles were deposited on these materials and also on Vulcan XC-72 using the polyol method. The structural and electrochemical properties of the obtained catalysts were investigated in a model glass three-electrode electrochemical cell and in a laboratory PEM fuel cell.
View Article and Find Full Text PDF