Publications by authors named "Sergej Masich"

Genetic variability in sexually reproducing organisms results from an exchange of genetic material between homologous chromosomes. The genetic exchange mechanism is dependent on the synaptonemal complex (SC), a protein structure localized between the homologous chromosomes. The current structural models of the mammalian SC are based on electron microscopy, superresolution, and expansion microscopy studies using chemical fixatives and sample dehydration of gonads, which are methodologies known to produce structural artifacts.

View Article and Find Full Text PDF

In vertebrates, skin upholds homeostasis by preventing body water loss. The skin's permeability barrier is located intercellularly in the stratum corneum and consists of stacked lipid lamellae composed of ceramides, cholesterol, and free fatty acids. We have combined cryo-electron microscopy with molecular dynamics modeling and electron microscopy simulation in our analysis of the lamellae's formation, a maturation process beginning in stratum granulosum and ending in stratum corneum.

View Article and Find Full Text PDF

Artificial nanoparticles accumulate a protein corona layer in biological fluids, which significantly influences their bioactivity. As nanosized obligate intracellular parasites, viruses share many biophysical properties with artificial nanoparticles in extracellular environments and here we show that respiratory syncytial virus (RSV) and herpes simplex virus type 1 (HSV-1) accumulate a rich and distinctive protein corona in different biological fluids. Moreover, we show that corona pre-coating differentially affects viral infectivity and immune cell activation.

View Article and Find Full Text PDF

The synaptonemal complex transiently stabilizes pairing interactions between homologous chromosomes during meiosis. Assembly of the synaptonemal complex is mediated through integration of opposing transverse filaments into a central element, a process that is poorly understood. We have, here, analyzed the localization of the transverse filament protein SYCP1 and the central element proteins SYCE1, SYCE2 and SYCE3 within the central region of the synaptonemal complex in mouse spermatocytes using immunoelectron microscopy.

View Article and Find Full Text PDF

Improved knowledge of the topology of lamellar bodies is a prerequisite for a molecular-level understanding of skin barrier formation, which in turn may provide clues as to the underlying causes of barrier-deficient skin disease. The aim of this study was to examine the key question of continuity vs. discreteness of the lamellar body system using 3 highly specialized and complementary 3-dimensional (3D) electron microscopy methodologies; tomography of vitreous sections (TOVIS), freeze-substitution serial section electron tomography (FS-SET), and focused ion beam scanning electron microscopy (FIB-SEM) tomography.

View Article and Find Full Text PDF

It was suggested more than thirty years ago that Watson-Crick base pairing might be used for the rational design of nanometre-scale structures from nucleic acids. Since then, and especially since the introduction of the origami technique, DNA nanotechnology has enabled increasingly more complex structures. But although general approaches for creating DNA origami polygonal meshes and design software are available, there are still important constraints arising from DNA geometry and sense/antisense pairing, necessitating some manual adjustment during the design process.

View Article and Find Full Text PDF

The skin barrier is fundamental to terrestrial life and its evolution; it upholds homeostasis and protects against the environment. Skin barrier capacity is controlled by lipids that fill the extracellular space of the skin's surface layer--the stratum corneum. Here we report on the determination of the molecular organization of the skin's lipid matrix in situ, in its near-native state, using a methodological approach combining very high magnification cryo-electron microscopy (EM) of vitreous skin section defocus series, molecular modeling, and EM simulation.

View Article and Find Full Text PDF

In a synaptic active zone, vesicles aggregate around a densely staining structure called the presynaptic density. We focus on its three-dimensional architecture and a major molecular component in the locust. We used electron tomography to study the presynaptic density in synapses made in the brain by identified second-order neuron of the ocelli.

View Article and Find Full Text PDF

Synapses that sustain neurotransmitter release at high rates often contain special presynaptic cytosolic projections (PCPs) that are believed to facilitate synaptic vesicle (SV) movements to the sites of fusion. The genetically modifiable Drosophila neuromuscular junction (NMJ) serves as one of the model systems to investigate the functions of these structures. Using electron microscope tomography we determined the three-dimensional organization of the Drosophila PCP immobilized by high-pressure freezing, followed by cryo-substitution.

View Article and Find Full Text PDF

Electron tomography has been used for analyzing the active layer in a polymer solar cell, a bulk heterojunction of an alternating copolymer of fluorene and a derivative of fullerene. The method supplies a three-dimensional representation of the morphology of the film, where domains with different scattering properties may be distinguished. The reconstruction shows good contrast between the two phases included in the film and demonstrates that electron tomography is an adequate tool for investigations of the three-dimensional nanostructure of the amorphous materials used in polymer solar cells.

View Article and Find Full Text PDF

Intermediate filaments are a large and structurally diverse group of cellular filaments that are classified into five different groups. They are referred to as intermediate filaments (IFs) because they are intermediate in diameter between the two other cytoskeletal filament systems that is filamentous actin and microtubules. The basic building block of IFs is a predominantly alpha-helical rod with variable length globular N- and C-terminal domains.

View Article and Find Full Text PDF

Y-box proteins constitute an evolutionarily conserved family of DNA- and RNA-binding proteins involved in the regulation of transcription and translation. In the dipteran Chironomus tentans, a homologue to the vertebrate Y-box protein YB-1 was recently characterized and designated ctYB-1. It is transferred from nucleus to cytoplasm bound to mRNA and is likely to affect translation.

View Article and Find Full Text PDF

We describe a novel approach for the accurate alignment of images in electron tomography of vitreous cryo-sections. Quantum dots, suspended in organic solvents at cryo-temperatures, are applied directly onto the sections and are subsequently used as fiducial markers to align the tilt series. Data collection can be performed from different regions of the vitreous sections, even when the sections touch the grid only at a few places.

View Article and Find Full Text PDF

A specific messenger ribonucleoprotein (RNP) particle, Balbiani ring (BR) granules in the dipteran Chironomus tentans, can be visualized during passage through the nuclear pore complex (NPC). We have now examined the transport through the nuclear basket preceding the actual translocation through the NPC. The basket consists of eight fibrils anchored to the NPC core by nucleoprotein Nup153.

View Article and Find Full Text PDF

The nuclear poly(A)-binding protein, PABPN1, has been previously shown to regulate mRNA poly(A) tail length and to interact with selected proteins involved in mRNA synthesis and trafficking. To further understand the role of PABPN1 in mRNA metabolism, we used cryo-immunoelectron microscopy to determine the fate of PABPN1 at various stages in the assembly and transport of the Chironomus tentans salivary gland Balbiani ring (BR) mRNA ribonucleoprotein (mRNP) complex. PABPN1 is found on BR mRNPs within the nucleoplasm as well as on mRNPs docked at the nuclear pore.

View Article and Find Full Text PDF