Publications by authors named "Sergej Demokritov"

In order to design new nanomaterials with improved functionalities, magnetite nanoparticles (MNP) modified with arylazopyrazole (AAP) molecular photoswitches are presented. Water dispersibility is achieved by using poly(acrylic acid) (pAA) as a multidentate ligand, which is modified with AAP by amide coupling. The polymer ligand stabilizes the MNP, allows for - isomerization of the photoswitch, and provides pH responsiveness.

View Article and Find Full Text PDF
Article Synopsis
  • - Spin-wave technology is a new nanotech approach that aims to improve information transmission and processing by using magnetic waves instead of electrical charge, addressing some limitations of traditional electronics.
  • - Researchers have successfully created submicrometer wide spin-wave waveguides from a low-loss magnetic insulator called yttrium iron garnet (YIG), which can operate without the need for a magnetic field.
  • - The waveguides maintain a stable magnetic state at zero field and allow for long-distance spin wave propagation at gigahertz frequencies, paving the way for more efficient energy use in future spin-wave devices.
View Article and Find Full Text PDF

Large-amplitude magnetization dynamics is substantially more complex compared to the low-amplitude linear regime, due to the inevitable emergence of nonlinearities. One of the fundamental nonlinear phenomena is the nonlinear damping enhancement, which imposes strict limitations on the operation and efficiency of magnetic nanodevices. In particular, nonlinear damping prevents excitation of coherent magnetization auto-oscillations driven by the injection of spin current into spatially extended magnetic regions.

View Article and Find Full Text PDF

The emerging field of nanomagnonics utilizes high-frequency waves of magnetization-spin waves-for the transmission and processing of information on the nanoscale. The advent of spin-transfer torque has spurred significant advances in nanomagnonics, by enabling highly efficient local spin wave generation in magnonic nanodevices. Furthermore, the recent emergence of spin-orbitronics, which utilizes spin-orbit interaction as the source of spin torque, has provided a unique ability to exert spin torque over spatially extended areas of magnonic structures, enabling enhanced spin wave transmission.

View Article and Find Full Text PDF

Utilization of pure spin currents not accompanied by the flow of electrical charge provides unprecedented opportunities for the emerging technologies based on the electron's spin degree of freedom, such as spintronics and magnonics. It was recently shown that pure spin currents can be used to excite coherent magnetization dynamics in magnetic nanostructures. However, because of the intrinsic nonlinear self-localization effects, magnetic auto-oscillations in the demonstrated devices were spatially confined, preventing their applications as sources of propagating spin waves in magnonic circuits using these waves as signal carriers.

View Article and Find Full Text PDF

Background: As novel treatment approaches for Huntington's disease (HD) evolve, the use of transgenic (tg) large animal models has been considered for preclinical safety and efficacy assessments. It is hoped that large animal models may provide higher reliability in translating preclinical findings to humans, e.g.

View Article and Find Full Text PDF

Spin torque from spin current applied to a nanoscale region of a ferromagnet can act as negative magnetic damping and thereby excite self-oscillations of its magnetization. In contrast, spin torque uniformly applied to the magnetization of an extended ferromagnetic film does not generate self-oscillatory magnetic dynamics but leads to reduction of the saturation magnetization. Here we report studies of the effect of spin torque on a system of intermediate dimensionality--a ferromagnetic nanowire.

View Article and Find Full Text PDF

With the advent of pure-spin-current sources, spin-based electronic (spintronic) devices no longer require electrical charge transfer, opening new possibilities for both conducting and insulating spintronic systems. Pure spin currents have been used to suppress noise caused by thermal fluctuations in magnetic nanodevices, amplify propagating magnetization waves, and to reduce the dynamic damping in magnetic films. However, generation of coherent auto-oscillations by pure spin currents has not been achieved so far.

View Article and Find Full Text PDF

Spin currents--the flow of angular momentum without the simultaneous transfer of electrical charge--play an enabling role in the field of spintronics. Unlike the charge current, the spin current is not a conservative quantity within the conduction carrier system. This is due to the presence of the spin-orbit interaction that couples the spin of the carriers to angular momentum in the lattice.

View Article and Find Full Text PDF

The transition from stationary to chaotic spin-wave soliton trains has been observed. The experiment utilized cw excitation of envelope solitons through self-modulation instability of spin waves. By increasing the spin-wave power, the secondary self-modulation instability succeeded the primary modulation instability, resulting in after-modulation of the soliton train amplitude.

View Article and Find Full Text PDF

Dynamics induced by spin-transfer torque is a quickly developing topic in modern magnetism, which has initiated several new approaches to magnetic nanodevices. It is now well established that a spin-polarized electric current injected into a ferromagnetic layer through a nanocontact exerts a torque on the magnetization, leading to microwave-frequency precession detectable through the magnetoresistance effect. This phenomenon provides a way for the realization of tunable nanometre-size microwave oscillators, the so-called spin-torque nano-oscillators (STNOs).

View Article and Find Full Text PDF

We have studied the tunneling of spin-wave pulses through a system of two closely situated potential barriers. The barriers represent two areas of inhomogeneity of the static magnetic field, where the existence of spin waves is forbidden. We show that for certain values of the spin-wave frequency corresponding to the quantized spin-wave states existing in the well formed between the barriers, the tunneling has a resonant character.

View Article and Find Full Text PDF

Using low-loss dielectric magnetic films in combination with space-resolved Brillouin light scattering spectroscopy we have studied nonlinear modification of eigenmode spatial distributions in saturated magnetic squares. We have found that, as the angle of magnetization precession increases, the eigenmode spatial distributions experience significant qualitative changes due to a nonlinear coupling between forming them standing spin waves. We show that the found nonlinear eigenmodes cannot be described by means of the linear theoretical approach even qualitatively.

View Article and Find Full Text PDF

Magneto-optical Kerr effect (MOKE) spectroscopy in the -1st diffraction order with p-polarized incidence is applied to study arrays of submicron Permalloy wires at polar magnetization. A theoretical approach combining two methods, the local modes method neglecting the edge effects of wires and the rigorous coupled wave analysis, is derived to evaluate the diffraction losses due to irregularities of the wire edges. A new parameter describing the quality of the edges is defined according to their contribution in the diffracted MOKE.

View Article and Find Full Text PDF

Quantized spin-wave eigenmodes in single, 16 nm thick and 0.75 to 4 mum wide square permalloy islands with a fourfold closure domain structure have been investigated by microfocus Brillouin light scattering spectroscopy and time resolved scanning magneto-optical Kerr microscopy. Up to six eigenmodes were detected and classified.

View Article and Find Full Text PDF

Solitons are large-amplitude, spatially confined wave packets in nonlinear media. They occur in a wide range of physical systems, such as water surfaces, optical fibres, plasmas, Bose-Einstein condensates and magnetically ordered media. A distinguishing feature of soliton behaviour that is common to all systems, is that they propagate without a change in shape owing to the stabilizing effect of the particular nonlinearity involved.

View Article and Find Full Text PDF