Publications by authors named "Sergei Soloviev"

We studied patient JS, who had a right occipital infarct that encroached on visual areas V1, V2v, and VP. When tested psychophysically, he was very impaired at detecting the direction of motion in random dot displays where a variable proportion of dots moving in one direction (signal) were embedded in masking motion noise (noise dots). The impairment on this motion coherence task was especially marked when the display was presented to the upper left (affected) visual quadrant, contralateral to his lesion.

View Article and Find Full Text PDF

Background: Main waterfowl migration systems are well understood through ringing activities. However, in mallards (Anas platyrhynchos) ringing studies suggest deviations from general migratory trends and traditions in waterfowl. Furthermore, surprisingly little is known about the population genetic structure of mallards, and studying it may yield insight into the spread of diseases such as Avian Influenza, and in management and conservation of wetlands.

View Article and Find Full Text PDF

We used six psychophysical tasks to measure sensitivity to different types of global motion in 45 healthy adults and in 57 stroke patients who had recovered from the initial results of the stroke, but a large subset of them had enduring deficits on selective visual motion perception tasks. The patients were divided into four groups on the basis of the location of their cortical lesion: occipito-temporal, occipito-parietal, rostro-dorsal parietal, or frontal-prefrontal. The six tasks were: direction discrimination, speed discrimination, motion coherence, motion discontinuity, two-dimensional form-from-motion, and motion coherence - radial.

View Article and Find Full Text PDF

An unresolved issue in visual motion perception is how distinct are the processes underlying 'first-order' and 'second-order' motion. The former is defined by spatio-temporal variations of luminance and the latter by spatio-temporal variations in other image attributes such as contrast or depth, for example. Using neuroimaging and psychophysics we present data from four neurological patients with unilateral and mostly cortical infarcts, which strongly suggest that first- and second-order motion have a different neural substrate.

View Article and Find Full Text PDF