Artificial Intelligence (AI) and Machine Learning (ML) are powerful tools shaping the healthcare sector. This review considers twelve key aspects of AI in clinical practice: 1) Ethical AI; 2) Explainable AI; 3) Health Equity and Bias in AI; 4) Sponsorship Bias; 5) Data Privacy; 6) Genomics and Privacy; 7) Insufficient Sample Size and Self-Serving Bias; 8) Bridging the Gap Between Training Datasets and Real-World Scenarios; 9) Open Source and Collaborative Development; 10) Dataset Bias and Synthetic Data; 11) Measurement Bias; 12) Reproducibility in AI Research. These categories represent both the challenges and opportunities of AI implementation in healthcare.
View Article and Find Full Text PDFEmerging technologies are set to play an important role in our response to the COVID-19 pandemic. This paper explores three prominent initiatives: COVID-19 focused datasets (e.g.
View Article and Find Full Text PDF